

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cs-61b/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cs-61b/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
提交记录


	以lab*, hw*开头的文件放在skeleton-sp16/目录下

	以lec*开头的文件放在lectureCode-sp16/目录下

	以dis*开头的文件放在disCode-sp16/目录下

	自己修改的部分在源文件有@author wyc标识



| 项目                           | 日期          |备注 |
| ——–                      | —–         |—–|
| Hash Map      | 2016.8.2      | lab9 modified, write myHashEntry, iteratro nested class|
| Hash Map                      | 2016.8.1      | lab9|
| dis9 Hashing                  | 2016.7.31     | |
| HW2                           | 2016.7.31     | implement two calsses Percolation.java and PercolationStats.java|
| Algs 424-431              | 2016.7.29     | Balanced BSTs, lec22 |
| BSTMap Test | 2016.7.29 | lab8(2) |
| Asymptotics dis               | 2016.7.28     ||
| Lab 8: BSTs and Asymptotics(without extra)    |2016.7.26| |
|||Create a class BSTMap |
| Algs 396-406                  | 2016.7.26     | |
| Algs 216-233                  | 2016.7.26     | |
| Algs 170-198                  | 2016.7.25     | |
| Asymptotics III               | 2016.7.25     | |
| Asymptotic analysis           | 2016.7.24     | |
| Asymptotics II                | 2016.7.24     | |
| Asymptotics I                 | 2016.7.24     | |
| hw1/synthesizer/              | 2016.04.14    | hw1 finished |
| lec14/DIY/MapHelper.java      | 2016.04.14    | More Generics |
| proj2/editor/Editor.java      | 2016.04.14    | Lab 5: Project 2 (getting started) |
| lec13/DIY/                    | 2016.04.13    | Generics, Autoboxing |
| lec12/DIY/                    | 2016.04.13    | package exercise, creating package david.wu.animal|
| proj1c/Deque.java             | 2016.04.10    | proj1c finished, creating 5 files, including Deque,LinkedListDeque,OffByN,OffByOne and Palindrome |
| proj1c/LinkedListDeque.java   |               ||
| proj1c/OffByN.java            |               ||
| proj1c/OffByOne.java          |               ||
| proj1c/Palindrome.java        |               ||
| proj1b/TestArrayDeque1B.java  | 2016.04.09    | proj1b finished , creating Test files |
| proj1b/TestLinkedListDeque1B.java|            | TestArrayDeque1B.java TestLinkedListDeque1B.java |
| proj1/LinkedListDeque.java    | 2016.04.04    | proj1a finished|
| proj1/LinkedListDequeTest.java|               | Using circular sentinel topology|
| proj1/ArrayDeque.java         |               | and generic data structures|
| proj1/ArrayDequeTest.java     |               | |
| lab3/IntList/IntListTest.java | 2016.04.03    | lab3 unit testing|
| lab3/Intlist/IntList.java     | 2016.04.02    | lab3 unit testing copy IntList from lab2, adding two reverse methods|
| lab3/Arithmetic/ArithmeticTest.java|2016.04.03| testing |
| dis3/SList.java               | 2016.04.02    | copy Slist from lec4 and add reverse methonds|
| proj0/NBody.java              | 2016.03.31    | create Nbody|| proj0/Planet.java             | 2016.03.31    | create Planet|
| lec6/DIY/AList.java           | 2016.03.31    | create Alist|
| lec4/DIY/SList.java           | 2016.03.29    | create Slist|| lab2/Intlist/IntList.java     | 2016.03.29    | add 2 menthods  |


  
    
    
    Packages Exercise
    
    

    
 
  
  

    
      
          
            
  
Packages Exercise

Task 1: Convert the Dog and DogLauncher classes so that they are part of the ug.joshh.animal package. Successfully compile and run DogLauncher.

Task 2: Create an ExternalDogLauncher class that is NOT part of the package, but which is nonetheless capable of creating and printing out a Dog. Do not use import statements.

Task 2b: Modify your answer from task 2 so that it uses import statements.




ADTs Exercise

Create a file which counts the number of instances of each character in a file.





          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  Task 1: Convert the Dog and DogLauncher classes so that they are part of the ug.joshh.animal package. Successfully compile and run DogLauncher.

Task 2: Create an ExternalDogLauncher class that is NOT part of the package, but which is nonetheless capable of creating and printing out a Dog. Do not use import statements.

Task 2b: Modify your answer from task 2 so that it uses import statements.



          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  Create a new interface that allows the Maximizer.max method to do its job on ANY object implementing that interface.



          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 1a
~ title: Data Structures, version 1.0

Unlike the previous project, this project is broken into three parts. This is to keep you on the right track. Each part will be due separately. You must have the same partner (if applicable) for all three parts.

This project is brand new. Please let us know on Piazza if you spot any bugs or issues.


Introduction

In project 1, we will build implementations of a “Double Ended Queue” using both lists and arrays. We will later learn how to write our own tests for those data structures, and finally we will use those data structures to solve a small real world problem.

Project 1a is the implementation of the data structures. In this part of the project you will create exactly two Java files: LinkedListDeque.java and ArrayDeque.java, with public methods listed below.

Unlike project 0, we will provide relatively little scaffolding. In other words, we’ll say what you should do, but not how.

For this project, you are allowed to work with a partner. If you’d like to work with a partner sign up here [https://docs.google.com/a/berkeley.edu/forms/d/1Pc7tgdak8e9O11zI35cJ97E95PINKiB4tiCe6vgtF0g/viewform]. You may not work with the same person that you worked with on project 0. While we will not absolutely require that you have the same level of experience for this project, we still recommend it.




Getting the Skeleton Files

As with project 0, you should start by downloading the skeleton files. The directions are repeated below.

To do this, head to the folder containing your copy of your repository. For example, if your login is ‘agz’, then head to the ‘agz’ folder (or any subdirectory). If you’re working with a partner, you should instead clone your partner repository, e.g. git clone https://github.com/Berkeley-CS61B/proj1-bqd-aba

If you’re working solo, you should now be in your personal repo folder, e.g. agz. If you’re working with a partner, your computers should both be in the proj1-bqd-aba folder that was created when you cloned the repo.

Now we’ll make sure you have the latest copy of the skeleton files with by using git pull skeleton master. If you’re using your partner repo, you’ll also need to set the remote just like we did in lab1 using the git remote add skeleton https://github.com/Berkeley-CS61B/skeleton-sp16.git command.

If you find yourself faced with a strange text editor or a merge conflict, see the project 0 directions [http://cs61b.ug/sp16/materials/proj/proj0/proj0.html] for how to proceed.

Once you’ve successfully merged, you should see a proj1 directory appear with files that match the skeleton repostiory [https://github.com/Berkeley-CS61B/skeleton-sp16/tree/master/proj1].

If you get some sort of error, STOP and either figure it out by carefully reading the the git guide or seek help at OH or Piazza. You’ll potentially save yourself a lot of trouble vs. guess-and-check with git commands. If you find yourself trying to use commands you Google like force push, don’t [https://twitter.com/heathercmiller/status/526770571728531456].

The only provided file in the skeleton is LinkedListDequeTest.java. This file provides examples of how you might write tests to verify the correctness of your code. To encourage self-sufficiency in testing, we will not be putting up the autograder until 2/1. We strongly encourage you try out the given tests, as well as to write your own.

The provided tests involve a lot of custom logic (e.g. printing error messages, keeping track of whether all tests have passed, printing tests names, etc.). In part B of this project, we will write so-called JUnit tests, which will do most of this work for us. Writing tests for part A will therefore make part B easier, since you will have already thought about testing.

To use the sample test, you must uncomment the lines in the sample tests. Only uncomment a test once you have implemented all of the methods used by that test (otherwise it won’t compile).




The Deque API

The double ended queue is very similar to the SList and AList classes that we’ve discussed in class. Specifically, any Deque implementation must have exactly the following operations:


	public void addFirst(Item): Adds an item to the front of the Deque.

	public void addLast(Item): Adds an item to the back of the Deque.

	public boolean isEmpty(): Returns true if deque is empty, false otherwise.

	public int size(): Returns the number of items in the Deque.

	public void printDeque(): Prints the items in the Deque from first to last, separated by a space.

	public Item removeFirst(): Removes and returns the item at the front of the Deque. If no such item exists, returns null.

	public Item removeLast(): Removes and returns the item at the back of the Deque. If no such item exists, returns null.

	public Item get(int index): Gets the item at the given index, where 0 is the front, 1 is the next item, and so forth. If no such item exists, returns null. Must not alter the deque!



Your code must for both implementations (LinkedListDeque.java and ArrayDeque.java) must include all of these public methods, in addition to any listed below in the section for the respective implementations.


Linked List Deque




Note: We covered everything needed in lecture to do this part on Jan 27 and Jan 29.

As your first of two Deque implementations, you’ll build the LinkedListDeque class, which will be linked list based. Your operations are subject to the following rules:


	add and remove operations must not involve any looping or recursion. A single such operation must take “constant time”, i.e. execution time should not depend on the size of the Deque.

	get must use iteration, not recursion.

	size must take constant time.

	The amount of memory that your program uses at any given time must be proportional to the number of items. For example, if you add 10,000 items to the Deque, and then remove 9,999 items, the resulting size should be more like a deque with 1 item than 10,000. Do not maintain references to items that are no longer in the Deque.



In addition to the methods listed above, you should also include:


	public LinkedListDeque(): Creates an empty linked list deque.

	public Item getRecursive(int index): Same as get, but uses recursion.



While this may sound simple, there are many design issues to consider, and you may find the implementation more challenging than you’d expect. Make sure to consult the lecture on doubly linked lists, particularly the slides on sentinel nodes: two sentinel topology [https://docs.google.com/presentation/d/1CqIFP2SPvgJvKKXCmzpRt6e57FYFsjK_Y7vVq0zRFuQ/edit#slide=id.g829fe3f43_0_291] circular sentinel topology [https://docs.google.com/presentation/d/1CqIFP2SPvgJvKKXCmzpRt6e57FYFsjK_Y7vVq0zRFuQ/edit#slide=id.g829fe3f43_0_376]. I prefer the circular approach. You are not allowed to use Java’s LinkedList data structure (or any data structure from java.util) in your implementation.






Array Deque




Note: We’ll have covered everything needed in lecture to do this part by Feb 1st (lecture 6)

As your second of two Deque implementations, you’ll build the ArrayDeque class. For this implementation, your operations are subject to the following rules:


	add and remove must take constant time, except during resizing operations. It is up to you to decide an appropriate initial size for the Array.

	get and size must take constant time.

	The amount of memory that your program uses at any given time must be proportional to the number of items. For example, if you add 10,000 items to the Deque, and then remove 9,999 items, the resulting size should be more like a deque with 1 item than 10,000. Do not maintain references to items that are no longer in the Deque.



Furthermore, this Deque must use arrays as the core data structure.

We strongly recommend that you treat your array as circular for this exercise. In other words, if your front pointer is at position zero, and you addFirst, the front pointer should loop back around to the end of the array (so the new front item in the deque will be the last item in the underlying array). This will result in far fewer headaches than non-circular approaches. You will find the modulus % operator useful.

The signature of the constructor should be public ArrayDeque(). That is, you need only worry about initializing empty ArrayDeques.








Tips

Work out what your data structures will look like on paper before you try implementing them in code! If you have a partner, have one partner give commands, and have the other partner draw everything out. Make sure you agree on what’s happening. Try to come up with operations that might reveal problems with your implementation.

Make sure you think carefully about what happens if the data structure goes from empty, to some non-zero size (e.g. 4 items) back down to zero again, and then back to some non-zero size. This is a common oversight.

Sentinel nodes make life easier.

Circular data structures make life easier for both implementations (but especially the ArrayDeque).

Consider a helper function to do little tasks like compute array indices. For example, in my implementation of ArrayDeque, I wrote a function called int minusOne(int index) that computed the index immediately before a given index.




Frequently Asked Questions


How should I print the items in my deque when I don’t know their type?

It’s fine to use the default String that will be printed (this string comes from an Object’s implementation of toString(), which we’ll talk more about later this semester).  For example, if you called the generic type in your class Jumanji, to print Jumanji j, you can call System.out.print(j).




I can’t get Java to create an array of generic objects!

Use the strange syntax we saw in February 1st’s lecture, i.e. Item[] a = (Item[]) new Object[1000];




I tried that but I’m getting a compiler warning.

Sorry, this is something they messed up when they introduced generics into Java. There’s no nice way around it. Enjoy your compiler warning. We’ll talk more about this in a few weeks.







          

      

      

    

  

  
    
    
    Getting the Skeleton Files
    
    

    
 
  
  

    
      
          
            
  ~ number: 2
~ title: Disjoint Sets and Percolation

<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    tex2jax: {inlineMath: [["$","$"]]}
  });
</script>
<script type="text/javascript"
   src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>






Getting the Skeleton Files

As usual, run git pull skeleton master to get the skeleton files.




Introduction

In this program, we’ll write a program to estimate the value of the percolation threshold via Monte Carlo simulation [https://en.wikipedia.org/wiki/Monte_Carlo_method].

Introductory Video. An introductory video for this HW can be found at this link [https://www.youtube.com/watch?v=kIYKCsvG6UI&list=PLNSdoiHk6ujjZs46s6XVXEbZUuF1MIO7g]. It is broken into three parts: Intro, Implementation Spoilers, and Optimization Spoilers. Feel free to ignore these spoilers for a more difficult challenge. If you’d prefer to watch a two year old video I made when I was at Princeton, see this link [https://www.youtube.com/watch?v=o60oHXesOuA].

HW2 Slides. Slides for this HW can be found here [https://docs.google.com/presentation/d/1AV5v-gTSIi5xUwtm-FtkReUmuTA3Mqry1eGjje7OgQo/edit?usp=sharing]. Because this is a HW and not a project, I give spoilers for how to approach the HW. You may ignore them if you’d like a bigger challenge.

Percolation. Given a composite systems comprised of randomly distributed insulating and metallic materials: what fraction of the materials need to be metallic so that the composite system is an electrical conductor? Given a porous landscape with water on the surface (or oil below), under what conditions will the water be able to drain through to the bottom (or the oil to gush through to the surface)? Scientists have defined an abstract process known as percolation to model such situations.

The model. We model a percolation system using an N-by-N grid of sites. Each site is either open or blocked. A full site is an open site that can be connected to an open site in the top row via a chain of neighboring (left, right, up, down) open sites. We say the system percolates if there is a full site in the bottom row. In other words, a system percolates if we fill all open sites connected to the top row and that process fills some open site on the bottom row. (For the insulating/metallic materials example, the open sites correspond to metallic materials, so that a system that percolates has a metallic path from top to bottom, with full sites conducting. For the porous substance example, the open sites correspond to empty space through which water might flow, so that a system that percolates lets water fill open sites, flowing from top to bottom.)

[image: percolates]

The problem. In a famous scientific problem, researchers are interested in the following question: if sites are independently set to be open with probability p (and therefore blocked with probability 1 − p), what is the probability that the system percolates? When p equals 0, the system does not percolate; when p equals 1, the system percolates. The plots below show the site vacancy probability p versus the percolation probability for 20-by-20 random grid (left) and 100-by-100 random grid (right).

[image: threshold20]     [image: threshold100]

When $N$ is sufficiently large, there is a threshold value $p^*

$ such that when $p < p^*

$ a random N-by-N grid almost never percolates, and when $p > p^*

$, a random N-by-N grid almost always percolates. No mathematical solution for determining the percolation threshold $p^*

$ has yet been derived. Your task is to write a computer program to estimate $p^*

$.




Percolation.java

Percolation data type. To model a percolation system, create a data type in the hw2 package named Percolation with the following API:

public class Percolation {
   public Percolation(int N)                // create N-by-N grid, with all sites initially blocked
   public void open(int row, int col)       // open the site (row, col) if it is not open already
   public boolean isOpen(int row, int col)  // is the site (row, col) open?
   public boolean isFull(int row, int col)  // is the site (row, col) full?
   public int numberOfOpenSites()           // number of open sites
   public boolean percolates()              // does the system percolate?
   public static void main(String[] args)   // unit testing (not required)
}





Corner cases.  By convention, the row and column indices are integers between 0 and N − 1, where (0, 0) is the upper-left site: Throw a java.lang.IndexOutOfBoundsException if any argument to open(), isOpen(), or isFull() is outside its prescribed range. The constructor should throw a java.lang.IllegalArgumentException if N ≤ 0.

Performance requirements.  The constructor should take time proportional to $N^2$; all methods should take constant time plus a constant number of calls to the union-find methods union(), find(), connected(), and count(). Meeting these requirements is somewhat tricky! You might consider creating a solution that simply works, before figuring out a way to make it faster. For tips on meeting the speed requirements, see the video at the beginning of this spec. Your numberOfOpenSites() method must take constant time.




PercolationStats.java

Monte Carlo simulation. To estimate the percolation threshold, consider the following computational experiment:


	Initialize all sites to be blocked.

	Repeat the following until the system percolates:

	Choose a site uniformly at random among all blocked sites.

	Open the site.

	The fraction of sites that are opened when the system percolates provides an estimate of the percolation threshold.



For example, if sites are opened in a 20-by-20 grid according to the snapshots below, then our estimate of the percolation threshold is 204/400 = 0.51 because the system percolates when the 204th site is opened. The images correspond to the 50, 100, 150, and 204 sites being open, respectively.

[image: percolation50]     [image: percolation100]        [image: percolation150]     [image: percolation204]

By repeating this computation experiment $T$ times and averaging the results, we obtain a more accurate estimate of the percolation threshold. Let $x_t$ be the fraction of open sites in computational experiment $t$. The sample mean $\mu$ provides an estimate of the percolation threshold; the sample standard deviation $\sigma$ measures the sharpness of the threshold.

$\mu = \frac{x_1 + x_2 + ... + x_T}{T}$, $\sigma^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + ... + (x_T - \mu)^2}{T-1}$

Assuming T is sufficiently large (say, at least 30), the following provides a 95% confidence interval for the percolation threshold:

$[\mu - \frac{1.96\sigma}{\sqrt{T}}, \mu + \frac{1.96\sigma}{\sqrt{T}}]$

To perform a series of computational experiments, create a data type in the hw2 package named PercolationStats with the following API:

public class PercolationStats {
   public PercolationStats(int N, int T)   // perform T independent experiments on an N-by-N grid
   public double mean()                    // sample mean of percolation threshold
   public double stddev()                  // sample standard deviation of percolation threshold
   public double confidenceLow()           // low  endpoint of 95% confidence interval
   public double confidenceHigh()          // high endpoint of 95% confidence interval
}





The constructor should throw a java.lang.IllegalArgumentException if either N ≤ 0 or T ≤ 0.

The constructor should take two arguments N and T, and perform T independent computational experiments (discussed above) on an N-by-N grid. Using this experimental data, it should calculate the mean, standard deviation, and the 95% confidence interval for the percolation threshold.

You must use edu.princeton.cs.introcs.StdRandom [http://algs4.cs.princeton.edu/code/javadoc/edu/princeton/cs/algs4/StdRandom.html] to generate random numbers because our testing suite relies on this library. You should use edu.princeton.cs.introcs.StdStats [http://algs4.cs.princeton.edu/code/javadoc/edu/princeton/cs/algs4/StdStats.html] to compute the sample mean and standard deviation, but if you’d prefer, you’re welcome to write your own functions to compute statistics.




Runtime Analysis (Ungraded)

This part of the HW will not be graded, but a similar problem will appear on midterm 2.


	Implement the Percolation data type using the quick-find algorithm in QuickFindUF. Use Stopwatch to measure the total running time of PercolationStats for various values of N and T. How does doubling N affect the total running time? How does doubling T affect the total running time? Give a formula (using tilde notation) of the total running time on your computer (in seconds) as a single function of both N and T.

	Now, implement the Percolation data type using the weighted quick-union algorithm in WeightedQuickUnionUF. Answer the same questions in the previous bullet.






Provided Files

We provide two clients that serve as large-scale visual traces. We highly recommend using them for testing and debugging your Percolation implementation.

Interactive Visualization client. InteractivePercolationVisualizer.java animates the results of opening sites in a percolation system, using the mouse as input. It takes a command-line integer N that specifies the grid size. As a bonus, it prints out the sequence of sites opened in the same format used by PercolationVisualizer (described below), so you can use it to prepare interesting files for testing. If you design an interesting data file, feel free to share it in the discussion forums.

File-Based Visualization client.

This test is similar to the first test client except that the input comes from a file (instead of mouse clicks). It visualizes by performing the following steps:


	Read the grid size N from the file.

	Create an N-by-N grid of sites (initially all blocked).

	Read in a sequence of sites (row i, column j) to open from the file. After each site is opened, draw full sites in light blue, open sites (that aren’t full) in white, and blocked sites in black using standard draw, with site (0, 0) in the upper left-hand corner.



The program should behave as in this movie and the following snapshots when used with input20.txt. The images correspond to the 50, 100, 150,  204, and 250 sites being open, respectively.

   $ cat input20.txt
   20
    6 10
   17 10
   11  4
    8  4
    4  8
    0  0
   ...

   $ java PercolationVisualizer input20.txt





[image: percolation50]     [image: percolation100]        [image: percolation150]     [image: percolation204]     [image: percolation250]

Sample data files. The inputFiles directory contains some sample files for use with the visualization client. Associated with most input .txt file is an output .png file that contains the desired graphical output at the end of the visualization.




Submission

Submit a zip file containing just the folder for your hw2 package, similar to what you’ve done in previous labs, e.g. lab 6 [http://cs61b.ug/sp16/materials/lab/lab6/lab6.html]. Your zip file must contain hw2/Percolation.java (using the weighted quick-union algorithm from WeightedQuickUnionUF) and hw2/PercolationStats.java. You do not need to submit any other files.

For example:

[image: submission]




FAQ


What should stddev() return if T equals 1?

The sample standard deviation is undefined. We recommend returning Double.NaN but we will not test this case.




After the system has percolated, PercolationVisualizer colors in light blue all sites connected to open sites on the bottom (in addition to those connected to open sites on the top). Is this “backwash” acceptable?

While allowing backwash does not strictly conform to the Percolation API, it requires quite a bit of ingenuity to fix and it leads to only a small deduction if you don’t.

[image: percolation]




How do I generate a site uniformly at random among all blocked sites for use in PercolationStats?

Pick a site at random (by using StdRandom or some other library to generate two integers between 0 (inclusive) and N (exclusive) and use this site if it is blocked; if not, repeat.




I don’t get reliable timing information in PercolationStats when N = 200. What should I do?

Increase the size of N (say to 400, 800, and 1600), until the mean running time exceeds its standard deviation.




I’m failing the Chi Squared test but passing everything else.

The issue is that you’re using the same random seed for multiple simulations, and the statistical test is catching the fact that they are the same.

If you look at the code for StdRandom, you’ll see that it sets the seed just once (the first time StdRandom is used), which prevents this issue of seed reset. In short, don’t set the seed yourself.

Alternately, make sure you’re not generating biased random numbers. You should be using the StdRandom method that generates integers, not doubles.




It’s telling me that my code reports “false” for percolates() but when I run the visualizer I’m getting true!

The visualizer does a very specific sequence of isOpen/isFull/percolates() calls. Try creating your own test that only opens sites and then calls percolates(). Alternately, disable all isOpen and/or isFull calls in the visualizer so you can focus on the percolates() behavior. Alternately, pay close attention to the test labeled Random Operation Order.




My code is compiling on my computer but not on the autograder.

Your code must obey the API exactly. You may not add additional public methods or variables to the Percolation class. When we test your PercolationStats, we use a reference version of Percolation instead of your version to avoid cascading errors – which means you can’t assume that any additional public methods are available.






Credits

This assignment originally developed by Kevin Wayne and Bob Sedgewick at Princeton University, with autograder built by Josh Hug for the Princeton Algorithms course.





          

      

      

    

  

  
    
    
    SingleLetterDisplaySimple
    
    

    
 
  
  

    
      
          
            
  This folder contains examples that you might find useful for this project. These include (listed roughly in the order that we anticipate they will be useful to you):


	SingleLetterDisplaySimple.java

	SingleLetterDisplay.java

	KeyPressPrinter.java

	ShortcutKeyPrinter.java

	MouseClickPositionPrinter.java

	CopyFile.java

	ResizeAllen.java

	ScrollBarExample.java

	PathDrawer.java

	ClipboardExample.java



The example_files folder also contains two example files that may be useful: one that uses Linux-style newline characters (a “\n” represents a newline) and one that uses Windows-style newlines (“\r\n” denotes a newline).  Both of these files should look the same when opened by your editor.


SingleLetterDisplaySimple

This file contains a simple program that displays the most recently typed letter to the screen in a graphical user interface (GUI) window.




SingleLetterDisplay

An enhanced version of SingleLetterDisplaySimple that also creates a color-changing box that surrounds the text. You may find this handy when figuring out how to do your cursor (hint: one way to represent a cursor is a very skinny blinking rectangle).




KeyPressPrinter

Creates a GUI window that is not used for drawing, but instead just for collecting and printing KeyEvents. KeyEvents are a bit counterintuitive. We highly recommend that you attempt to diagnose any KeyEvent confusion using this program, as opposed to one of the clients above or your editor.




ShortcutKeyPrinter

Creates a GUI window that is not used for drawing, but instead just for collecting and printing KeyEvents.  In particular, this file prints out a message anytime the user presses Control+a or Control+z.




MouseClickPositionPrinter

Creates a GUI window, and whenever the user clicks the mouse, prints the position of the mouse click.




CopyFile

Copys text from one file to another.  Illustrates how to use Java’s classes for reading and writing files.




ResizeAllen

Illustrates how to determine when the window has been resized.




ScrollBarExample

Provides an example of how to use scrollbars.




PathDrawer

Creates a GUI window that draws the path taken whenever the mouse was dragged (this example is useful if you’re implementing text selection for gold points).




ClipboardExample

Illustrates how to interact with the system clipboard (to implement copy and paste for gold points).





          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  ~ number: 2
~ title: Additional Tips on the Scroll Bar

Having trouble with JavaFX’s ScrollBar class? Here are some tips on how it works.

The ScrollBar class has a few attributes you’ll likely need to set in your editor.  The most important attributes to understand are the min, the max, and the value:


	value: The value of the scroll bar describes the current position.

	min: The value of the scroll bar when the thumb is at the top.

	max: The value of the scroll bar when the thumb is at the bottom.



The scroll bar should always satisfy the invariant that min <= value <= max.

Let’s say we have a scroll bar where we set the min equal to 0, the max equal to 10, and the value equal to 5:

ScrollBar scrollBar = new ScrollBar();
scrollBar.setMin(0);
scrollBar.setMax(10);
scrollBar.setValue(5);





In this case, since the current position is halfway between min and max, the thumb will be shown in the middle.  Note that for all of the images below, we rotated the scroll bar sideways to make these easier to look at. The TOP (so the min position) is always shown on the LEFT side.

[image: scrollbar_middle]

To move the thumb up a bit, you could change the value:

scrollBar.setValue(3);





This would result in the scroll bar looking like this:

[image: scrollbar_3]

If you wanted to move the thumb all the way to the top, you could set value equal to min:

scrollBar.setValue(0);





Which would result in:

[image: scrollbar_top]

The value of the scroll bar is only meaningful in the context of the min and max values.  For example, above, we set the value equal to 5 when the min was 0 and max was 10.  What if we had the value still equal to 5, the min still equal to 0, but the max 100? The scroll bar would look very different (the thumb will be very close to the top, because 5 is much closer to 0 than to 100):

[image: scrollbar_5_100]

Try some “hello worlding” at first where you make a scroll bar, set different min, max, and value values, and see what happens!

For this project, one good way to set the value of the scroll bar is based on the total height (in pixels) of text in your text editor.  Let’s walk through an example of how this might work.  Here’s our solution editor, displaying the example file we gave you at two different scroll bar positions (and with a smaller width than the default width of 500 pixels):

[image: scrollbar]

Using Verdana, size 12 font, each line is 15 pixels high, and with this window size, the file has 24 lines of text.  The total height of text in the file is 24 lines * 15 pixels per line = 360 pixels.  The window height is only 345 pixels, so one line of text will always be hidden.  When the thumb of the scroll bar is at the top, the last line of text is below the bottom of the window.  When the thumb of the scroll bar is at the bottom, the all of the text has been moved up 15 pixels, so the last line of text is visible and the first line is hidden.  If the thumb of the scroll bar were in the middle position, half of one line would be hidden above the top of the window, and half of one line would be hidden below the bottom of the window.

Make sure to read the tip in the scroll bar section of the main project spec about how to easily update the position of all of your text objects, without iterating through every single text object (by creating a Group)!

One last gotcha for the scroll bar: you’ll need to create a listener that “listens” for when the user moves the scroll bar, and moves the y-position of your text objects (and your cursor) accordingly.  Beware that this listener gets called anytime the value of the scroll bar changes – even if that change was one you initiated by calling scrollBar.setValue(x).  So, you’ll need to check the new value passed into the changed function to see if anything has actually changed.



          

      

      

    

  

  
    
    
    Change Log
    
    

    
 
  
  

    
      
          
            
  ~ number: 2
~ title: Editor, version 1.0


Change Log

This section describes major changes that have been made to the spec since it was released.


March 6


	Updated information about grading (to link to Piazza).






March 3


	Added an extra page with some tips about how to use JavaFX’s ScrollBar class, linked from the scroll bar section.






March 1


	Added another video on data structure selection and analysis.

	Added basics autograder.






February 29


	Added FAQ about removing nodes

	Added a note that the scroll bar should never result in non-integral window positions (these positions should be rounded, like text positions).






February 27

Added more FAQs to address common questions about the mysterious JavaFX Nodes, Groups, and special root Group.




February 25


	Added a clarification to the runtimes: Using arrow keys or clicking should be resolved in constant time: but the length of each line is a constant, since the window can only be so wide.

	Added links to Project 2 slide and video.






February 23


	Added a requirement that shortcut+p prints the current cursor position, and removed the “cursor” option for the 2nd command line argument.

	Updated CopyFile.java example to show how to check if a file exists before attempting to read from it.

	Added a hint for how to display the cursor.






February 21

Clarified description of time requirements to explicitly separate the timing requirements for storing document data from the timing requirements for rendering.






Table of Contents


	Introduction

	Overview

	Getting the Skeleton Files

	Detailed Spec
	JavaFX and KeyEvents

	Window size and margins

	Command line arguments

	Data structures and time requirements

	Shortcut keys

	Font and spacing

	Newlines

	Cursor

	Word wrap

	Open and Save

	Scroll Bar

	Undo and redo

	Optional Beautification





	Gold points
	Selection (3 points)

	Copy / Paste (2 points)





	Frequently Asked Questions

	Acknowledgements






Introduction

Project 2 is the largest project you will do in this class, and the goal of the project is to teach you how to handle a larger code base than you have (likely) ever worked with before.  It is a solo project, so while you can discuss ideas with others, all of the code you submit will be your own.  This project is designed to be similar to the coding experience you might have at a summer internship or job: you’ll write a large amount of code, and you’ll need to interact with some external libraries that you’ve never used before.  By the time you’re done with this project, you will have written approximately 1000 lines of code.  This may sound like a lot of lines of code, and it is!  Here are some tips to avoid being crushed by complexity:


	Start early This project has some tricky data structures, so we recommend you start thinking about how to implement the project as soon as possible so that you have some time to mull over your design.  Also, you’ll be more efficient at writing code if you’re not stressed by an impending deadline!

	Design first Before writing any code, spend some time designing.  By “design”, we mean think about what data structures you’re going to use for each part of the project. We recommend thinking about all of the features and how each one might be implemented with your data structures, and do this before writing any code. You don’t need to know exactly how every feature will be implemented before you write any code, but it’s a good idea to have a rough idea and a sense of potential problem areas.  This will help you avoid a situation where you start implementing a feature later in the assignment and realize a massive re-write is necessary!

	Code small Constantly ask yourself “what’s the minimum amount of code I can write before testing this new functionality?” Testing doesn’t necessarily mean writing a unit test; it can mean sometime much simpler, like opening your program and trying some new input, or seeing if a feature of an external library works as expected.  The fewer lines of code that you write in between testing, the fewer lines you will need to debug when something goes wrong!  “HelloWorlding”, a technique described in lab 5, is an example of the “code small” mentality.

	Modularize To mimimize how much complexity you need to consider at any one time, divide your program into modules with clear simple interfaces.  Ideally, these interfaces should hide complexity in their implementations.  For example, the ArrayDeque you wrote in Project 1 hid the complexity of the re-sizing operation from a user of the class.  Similarly, in this project, you should write classes that hide complexity from the code that calls them, which will reduce how much complexity you need to consider at a time.

	Modularize This is so important that it is here again. Having a hierarchy of classes (or interfaces) with an easy to understand API will make your life so much easier than otherwise. Modular code that hides details is easier to understand, plan, develop, debug, and improve. And if you later decide you don’t like a piece of your program, a modular design means you can cleanly replace only that piece.

	Bounce ideas off of each other While you should write all of the code for the project on your own, you’re welcome to discuss design ideas with others in the class.  After you’ve thought about your design, we strongly recommend finding someone else in the class and discussing each of your approaches.  The other person likely thought of a few things you didn’t consider, and vice versa.

	Look at examples We have written examples (in the examples directory) that show how to use most of the functionality in JavaFX that you’ll need to use for this project.  Starting from these examples will be much easier than starting from scratch!



This project will be long, arduous, and at times frustrating.  However, we hope that you will find it a rewarding experience by the time you are done!

This is a brand new project, so bear with us as we work out kinks!  There is a chance we will make some of the currently required features gold points instead as the project progresses.

If you run into problems, be sure to check out the FAQ section before posting to Piazza.  We’ll keep this section updated as questions arise during the assignment.

For some additional tips on the project, see:


	Project 2 Design Guide Video: Link [https://youtu.be/MEOv98EFMqA]

	Project 2 Slides (video content and more): Link [https://docs.google.com/presentation/d/15NGQTbiQWq0PgSIpleuAGMDo-QFdER4A-2GX0_59D2A/edit#slide=id.g11b3bd1314_0_6]

	Project 2 Design Analyis Worksheet (make a copy): Link [https://docs.google.com/document/d/17IsU4plqtkbvxoF5f_uc7UMhxkaJ3TpxzaY67vh75fQ/edit]

	Example Project 2 Design Analysis Worksheet, using String as data structure: Link [https://docs.google.com/document/d/17PUw2EffgyU5_zQHZ8GV52EhS3NPwUyghFfX6EmJiS4/edit]



3/1/2016. For even more tips, see:


	Project 2 Video #2, More on Data Structures: Link [https://youtu.be/K5nsYVF96HY]

	Project 2 Design Analysis Worksheet, using FastLinkedList as data structure: Link [https://docs.google.com/document/d/1eIuf-7Lznfjq6Vccu-JnmIr8uWXdK1r3ufq2d5o6mII/edit]






Overview

In this project, you will build a text editor from scratch. You are probably familiar with a variety of different text editors, including relatively simple text editors that allow you to edit un-styled text (e.g., pico, Notepad, and TextEdit), and also more fully-featured text editors that allow you to do add formatting, run code, and more (e.g., Microsoft Word, Google Docs, Sublime, VI, Emacs, and IntelliJ).  For this project, you’ll implement a basic text editor that can be used to open, edit, and save plain text files.

In the overview here and the text below, we’ll refer to the “Shortcut” key.  By “shortcut key”, we mean the control key on Windows and Linux, and the command key on Mac.  Handling these special key presses is described in the shortcut keys section.

Your text editor should support the following features. Most of these features are described in more detail in the Detailed Spec section.


	Cursor The current position of the cursor should be marked with a flashing vertical line.

	Text input Each time the user types a letter on the keyboard, that letter should appear on the screen after the current cursor position, and the cursor should advance to be after the last letter that was typed.

	Word wrapping Your text editor should break text into lines such that it fits the width of the text editor window without requiring the user to scroll horizontally.  When possible, your editor should break lines between words rather than within words.  Lines should only be broken in the middle of a word when the word does not fit on its own line.

	Newlines When the user presses the Enter or Return key, your text editor should advance the cursor to the beginning of the next line.

	Backspace Pressing the backspace key should cause the character before the current cursor position to be deleted.

	Open and save Your editor should accept a single command line argument describing the location of the file to edit.  If that file exists, your editor should display the contents of that file.  Pressing shortcut+s should save the current contents of the editor to that file.

	Arrow keys Pressing any of the four arrow keys (up, down, left, right) should cause the cursor to move accordingly (e.g., the up key should move the cursor to be on the previous line at the horizontal position closest to the horizontal position of the cursor before the arrow was pressed).

	Mouse input When the user clicks somewhere on the screen, the cursor should move to the place in the text closest to that location.

	Window re-sizing When the user re-sizes the window, the text should be re-displayed so that it fits in the new window (e.g., if the new window is narrower or wider, the line breaks should be adjusted accordingly).

	Vertical scrolling Your text editor should have a vertical scroll bar on the right side of the editor that allows the user to vertically navigate through the file.  Moving the scroll bar should change the positioning of the file (but not the cursor position), and if the cursor is moved (e.g., using the arrow keys) so that it’s not visible, the scroll bar and window position should be updated so that the cursor is visible.

	Undo and redo Pressing shortcut+z should undo the most recent action (either inserting a character or removing a character), and pressing shortcut+y should redo.  Your editor should be able to undo up to 100 actions, but no more.

	Changing font size Pressing shortcut+”+” (the shortcut key and the “+” key at the same time) should increase the font size by 4 points and pressing shortcut+”-” should decrease the font size by 4 points.

	Printing the current position To facilitate grading, pressing shortcut+p should print the top left coordinate of the current cursor position.



If you’re unsure what some of these features mean, we suggest experimenting with Notepad, Microsoft Word, Google Docs, or TextEdit.  Those text editors all use a flashing vertical cursor, implement line wrap, react to arrow keys, scroll vertically, and accept mouse input in the way we expect you to for this assignment. Some of these editors (e.g., Microsoft Word) assume documents have a fixed with (e.g., 8.5”, to match the width of letter paper), so sometimes show a horizontal scroll bar.  For this assignment, you should always word-wrap the text to fit in the width of the current window, so you will never need to show a horizontal scroll bar.  Also note that up/down arrows are a bit more sophisticated in some editors than what we require in this assignment, as described in more detail in the detailed spec below.

For obvious reasons, the spec leaves some room for interpretation. Most reasonable interpretations will be given full credit. See the FAQ for more.




Getting the Skeleton Files

As with all previous projects, pull the skeleton using the command git pull skeleton master.  Make sure to reimport the project in IntelliJ.




Detailed Spec

The skeleton provides a single file named Editor.java that you should modify.  You may create as many additonal classes and files as you like.


JavaFX and KeyEvents

For this project, you’ll be using the JavaFX libary to create your application, display text, etc.  JavaFX is included in Java 1.8, so you do not need to download any additional libraries for this project.  JavaFX is a massive library that’s designed to support a wide variety of Java applications; as a result, it is significantly more complicated than the StdDraw library you used in project 0.  You will likely find JavaFX overwhelming when you first start writing code! One of the goals of this project is to help you get comfortable with using external libraries. To help you get started, we have written few example applications (described in examples/README); we highly recommend that you use one of these examples as a starting point for your editor.  There will be cases where our example is incomplete and you need to look up functionality on your own; the official documentation [https://docs.oracle.com/javase/8/javafx/api/] is a good starting point.

Much of the functionality you’ll implement in this project will be initiated by KeyEvents.  There are two kinds of KeyEvents: KEY_TYPED events and KEY_PRESSED events.

KEY_TYPED events are generated when a Unicode chracter is entered; you should use these to find out about character input for your text editor.  The KEY_TYPED events automatically handle capitalization (e.g., if you press the shift key and the “a” key, you’ll get a single KEY_TYPED event with a character of “A”).  You can ignore KEY_TYPED events that have 0-length (keys like the arrow key will result in a KEY_TYPED event with 0-length), that have a charater equal to 8 (which represents the backspace), and that have isShortcutDown() set to true (it’s easier to handle the shortcuts using the KEY_PRESSED events).

Every time a key is pressed, a KEY_PRESSED event will be generated.  The KEY_PRESSED events often duplicate the KEY_TYPED events.  For example, in the example we gave above where the user presses shift and the “a” key, JavaFX generates three events: one KEY_PRESSED event for the shift key, one KEY_PRESSED event for the “a” key, and one KEY_TYPED event with a character of “A”.  These KEY_PRESSED events aren’t very useful for normal text input, because they don’t handle capitalization; however, they are useful for control keys, because each KEY_PRESSED event has an associated KeyCode that’s useful for finding out about special keys (e.g., the code will be KeyCode.BACK_SPACE for the backspace key). If you’re unsure about how KeyEvents work, make sure to see the KeyPressPrinter.java example.

There are a few JavaFX classes that you may not use as part of this project.  You should only display text using the Text class, and you should be determining where to place text (and how to word wrap) yourself.  You cannot use the TextFlow, FlowPane, TextArea, TextInputControl, or HTMLEditor.  If in doubt about whether you can use a particular class or function, ask on Piazza.




Window size and margins

You should display the text in a window with a top and bottom margin of 0 (the bottom margin is only relevant when there is enough text  to reach the bottom of the window) and a left and right margin of 5 pixels.

When your editor first opens, the window size should be 500 by 500 pixels (including the scroll bar).




Command line arguments

Your Editor program should accept one required command line argument representing the name of the file to edit (see the Open and Save section for more information about how to handle the filename).  If no filename is provided, your editor should print a message stating that no filename was provided, and exit (see CopyFile.java for an example of how to check the number of command line arguments provided).

Editor should accept a second optional command line argument that controls the output of your program as follows:


	If the second command line argument is blank, your program should not print any output.

	If the second command line argument is “debug”, you can print any output you like to facilitate debugging.



TIP: One way to control when output is printed is to create a Print class with a static print(String toPrint) method.  The print method can check which command line argument is set (e.g., using a static variable) and either print or do nothing accordingly.




Data structures and time requirements

One of the most important decisions you’ll make in this project is what data structures to use. As you think about how to efficiently implement the functionality required by this project, we’d like you to consider two things separately:


Storing the contents of the document

First, consider how to store the contents of your document.  Here, we mean the information about what characters are in the document (either because the user added them to the document, or because they were in the original file that was opened).  You can think of this as being all of the information that’s needed to save the text.  This data should be stored in a data structure such that characters can be added to or deleted from the current cursor position in constant time (even if the cursor is somewhere in the middle of the document).

TIP: As in project 1a, sentinel nodes will make your life much easier!




Storing rendering information

You’ll also need to store information about how the text is displayed on the screen.  This may include data like where each character is placed on the screen, where word wraps occur, etc. None of this data is needed to save the file; it’s only needed to display the contents of the file to the user.

Updates to these data structure(s) can take linear time (i.e., the time can be proportional to the number of characters in the document).  In fact, we recommend an approach where you recompute all of the rendering information after each operation.  This makes word wrap much easier, because it’s easier to determine where word wraps occur if you start from the beginning of the file.

Moving the cursor (e.g., with a mouse click) should take time constant time. However, since each line has a constant length (since the window can only be so wide), this means your runtime may be proportional to the number of characters in the line where the new cursor position is located. Moving the cursor should not take time proportional to the length of the file (so, for example, you should not need to look at all of the characters in the file to determine the new cursor position). Keep in mind that it is possible that someone might use the scroll bars before clicking, so even if your cursor is at the beginning of the file, a click might come at the end.




Why?

You may be wondering why we require one part of operations like inserting a new character to be constant time (updating the data structure storing the character data), while the other part of inserting a new character is allowed to take linear time (re-rendering the document).  We’d like you to implement some things efficiently to give you some practice thinking about efficiency.  Your efficient data structure for storing character data paves the way for optimizations to rendering; however, these optimizations are tricky, so we’re not requiring them in this assignment.  If you’re interested, think about how you might do rendering more efficiently!

A hidden side-effect of this constraint is that it prevents you from attempting designs that are overally complicated.




Non-requirements

If you read about text editors online, there are many nifty data structures (gap buffers! balanced trees! etc.) that can be used to efficiently represent text for a text editor.  For the purposes of this assignment, you do not need to use any such sophisticated data structures.  With appropriate use of the data structures we’ve learned about so far in this class, you can satisfy the requirements described above.






Shortcut keys

Your editor should do various behaviors in response the user typing a “shortcut” key in addition to a letter.  For example, as described in more detail below, pressing the shortcut key and the letter “s” should cause the editor to save the current file.  The “shortcut key” should be the control key on Linux and Windows, and the command key on Mac (for consistency with other applications you’ve used on these operating systems).  Luckily you don’t need to deal with determining which operating system your program is running on; JavaFX has a nifty isShortcutDown() function that you can call on any KEY_PRESSED KeyEvent to determine whether the shortcut key is pressed.  Check out the ShortcutKeyPrinter program for an example of how this function can be used.




Font and spacing

By default, your editor should display all text in size 12 Verdana font.  Verdana is not a fixed-width font, so you will need to calculate the width of each letter to determine where the next letter should begin, and you will need to calculate the height of the font to determine where new lines should begin.  You can calculate the height of the font by checking the height of any character (JavaFX considers the height of a letter like “a” or even a space ” ” to be the same as the height of a letter like “Q” or “j”).  The only exception is newlines, which JavaFX considers to have twice the height of other characters.  Check out the example applications to see how to calculate the width and height of letters.  For this assignment, we suggest that you display each letter as a separate Text object. See the section in lab 5 labeled Our First Blind Alley.

JavaFX will report that letters have non-integral heights and widths (e.g., JavaFX reports that the letter “H” in the example below has a width of 9.02).  However, JavaFX displays characters on pixel boundaries, and chops off any decimal values that you pass in. For example, if you tell JavaFX to display a letter at position 5.8, the letter will be displayed at pixel 5.  As a result, you need to round all width and height values from JavaFX to integral values.  If you don’t do this, you’ll notice that your text ends up spaced in un-appealing ways.  The example below gets up-close-and-personal with some text in our solution editor to illustrate the width values reported by JavaFX and how they should be rounded to integral values. The blue boxes show pixel boundaries, and the grey bar at the top is the top of the editor window.

[image: hug_blownup]

For many fonts, the height of the font includes some whitespace at the top, even above tall characters. You can see this in the example above: there is whitespace above the “H” even though the top margin is 0.

If you take a screenshot of your own text editor and zoom in, yours may look like it has twice as many pixels as the screen shot above:

[image: hug_blownup_retina]

Fear not! This is because you have a fancy retina display, so your display uses 4 pixels for each 1 pixel that JavaFX knows about.  This isn’t something you need to handle in your code; just something to be aware of if you’re taking screenshots to understand what’s going on.

We strongly recommend that you change the “origin” of your text by calling setOrigin(VPos.TOP) on each of your Text objects.  For an example of this, see SingleLetterDisplay.java.  If you don’t do this, when you assign the text a y-position, that position will be the position of the bottom of letters like the “H” and “u” in the example above.  This is very inconvenient, because some of the text ends up below this position (e.g., the bottom of the “g”) above, so you’ll need to adjust for this offset.  Setting the origin to VPos.TOP means that the y-colordinate you assign the Text object will be the top of all letters (in the example above, all of the letters have VPos.TOP set as the origin, and they have an assigned y-position of 0).


Changing the font size

When the user presses the shortcut key and the key with the “+” on it, the font should increase by 4 points, and when the user presses the shortcut key and the “-” key, the font should decrease by 4 points (but the font should never decrease to be size 0 or below, so when the font size is 4, pressing the shortcut key and the “-” key should have no effect).  You should detect the minus key using KeyCode.MINUS. You should consider both KeyCode.PLUS and KeyCode.EQUALS to be the plus key (since on most keyboards, “+” and “=” are on the same key, and this behavior is consistent with other applications).






Newlines

To detect if the user has pressed the “return” or “enter” key, check if the character in a KEY_TYPED event is equal to “\r” (also known as the “carriage return”, or 0x0D in hex).  Please let us know if you have trouble with this; we have tried this on a few different operating systems, but there’s a chance that we’ll discover new inconsistenies with how how the “enter” key works on different systems.  One way to debug what’s happening if you run into trouble is to set a breakpoint inside your EventHandler, and then use IntelliJ’s debugger to look at the character code in the KeyEvent.  This is often easier than printing out the KeyEvent, since characters like “\r” don’t print nicely.

When you’re writing a file, you should never write “\r”; instead, you should use “\n” for all newlines (this is the UNIX style of handling newlines).

When you’re reading a file, you should treat “\n” as a newline, and you should also treat “\r\n” as a single newline.  You can assume that anytime you see a “\r” in a file you’re reading, it will be followed by a “\n”.  Windows operating systems use “\r\n” to represent a newline character, which is why we’re asking you to handle this second kind of newline character (this will also make it easier for you to test your editor if you’re on Windows, because you can create a file with a different program and then open it with your editor).  We’ve included two example files in the examples/example_files directory to help you test these two different types of newlines (these two files should appear the same when opened in your editor).




Cursor

The cursor should be shown as a vertical line with width 1 pixel and height equal to the height of each letter (see the figure above).  The cursor should blink for a period of 0.5 seconds: it should be black for 0.5 seconds, then disappear for 0.5 seconds, and so on.  The cursor should always be shown after a letter; for example, in the “Hug” example above, if the cursor were after the “u”, it would cover the first vertical line of pixels in “g” (and not the last vertical line of “u”).

TIP: If you can’t figure out how to display the cursor, take a look at SingleLetterDisplay.java.  Think about whether there’s anything in that example that would be useful for making a blinking cursor!


What happens when the cursor is between lines?

One tricky part is handling where to place the cursor when the cursor is at the end of a line.  If you experiment with Google Docs, you’ll notice that when the cursor’s logical position is in between two lines, it is sometimes displayed at the end of the earlier line, but other times it is displayed at the beginning of the later line.  For example, consider the text below:

[image: newline_example]

There is a space after the word “very”, and the editor word-wrapped the line between “very” and “long”.  When the cursor is after the space after “very” and before “long”, it will sometimes appear at the end of the 2nd line, after the space after “very”, and it will sometimes appear at the beginning of the 3rd line, before “long”.  When the cursor position is ambibugous because it is between lines, the positioning should obey the following rules:


	When the user is navigating with the left and right arrow keys, the cursor should always appear at the beginning of the later line.

	When the user is navigating with the up and down arrow keys or using the mouse, the cursor may appear in either position, as appropriate. For example, if the user clicks to the right of “very ”, the cursor should appear at the end of the 2nd line, after the space after “very”. If the user clicks to the left of “Here”, the later line, the cursor should instead appear before the “H”.  For a more detailed explanation of how the arrow keys should move the cursor, see the Moving the Cursor with Arrows section.

	When the most recent action was to add text, the cursor should appear at the end of the earlier line, except if the most recent action added a newline character, in which case the cursor should appear on the new line (consider this a hint: it’s easier if you put newline characters at the end of the line before the newline!).

	When the most recent action was to delete text and the cursor position is ambiguous, it should appear on the line where the deleted text was.



Note that these rules only apply when the cursor position is ambiguous because it is between lines.  If you have questions about how the cursor position should work, try experimenting with Google Docs or your editor of choice.  We have observed that editors are consistent on all but the last requirement (about what to do when text is deleted), which different editors handle in different ways.




Moving the cursor with arrows

There are a few different ways that you should handle moving the cursor.  First, you should support the arrow keys.  If the user presses the left arrow key, the cursor should move to the left one character (unless the cursor is at the beginning of the file, in which case pressing the left arrow key should have no effect).  Consider the example from above again:

[image: newline_example]

When the cursor is on the 3rd line, after the “l” in “long”, pressing the left arrow should move the cursor to before the “l” in “long”.  At this point, the cursor’s logical position is after the space after “very” and before “long”.  Pressing the left arrow again should move the cursor to after the “y” in “very” (and before the space after “very”).

As a second example, if the cursor is after the “H” in “Here”, pressing the left arrow key should move the cursor to immediately before the “H” key. Pressing the left arrow key again should move the cursor to after the ”)” on the first line (so the cursor has moved back one character, which in this case was a newline character).

The right arrow key should work in a similar way: pressing the right arrow key should advance the cursor one character to the right (unless the cursor is at the end of the file, in which case the right arrow key should have no effect).

The up and down arrows should move the cursor up one line and down one line, respectively.  The cursor’s horizontal position on the new line should be as close as possible to the horizontal position on the current line, with the constraint that the cursor should always appear between characters (it cannot be in the middle of a character).

When pressing the up and down arrows, you do not need to maintain a notion of the original position, which is a behavior implemented by many other text editors.  For example, consider a case where the cursor is at the end of a long line, and you press the up arrow to position the cursor at the end of the previous line, which is shorter.  If you press the down arrow again, the cursor does not need to re-appear at the end of the long line; it can re-appear at the horizontal position closet to the end of the previous, shorter line.




Moving the cursor with a mouse click

When the cursor is moved as a result a mouse click, the cursor’s new vertical position should be on the line corresponding to the vertical position of the mouse click.  If the mouse click is below the end of the file or above the beginning of the file, the new vertical position should be the last line or the first line, respectively.  The cursor’s horizontal position should be the closest position to the x-coordinate of the mouse click.  Keep in mind that this means that clicking on a letter may cause the cursor to appear before or after the letter, depending on whether the mouse position was closer to the left or right side of the letter!




Printing the Cursor Position

To facilitate grading, when the user presses shortcut+p, you should print the top left coordinate of the current cursor position.  The cursor position should be printed in the format “x, y” where the x and y positions describe the cursor position relative to the top left corner of the window (note that the y position may be negative when the cursor is above the window and out of view).  The cursor position should be followed by a newline.  For example, suppose you open the file, type a letter that is 7 pixels wide, type a second letter that is 4 pixels wide, press shortcut+p, move the cursor by pressing the left arrow once, and then press shortcut+p again, your program should print:

16, 0
12, 0





The cursor position should be printed as an integer because the cursor should always be at an integer, as described in Font and spacing.

The coordinates of the cursor that you print should be relative to the window.  For example, if the cursor is at the beginning of the first line of visible text, the position printed should be “5, 0”, even if there’s more text above that isn’t visible. We will be using your printed cursor positions for grading.




Non-requirements

As you experiment with other text editors for this project, you may notice that other editors stop the blinking of the cursor while text is being typed (so the cursor is shown as a solid line while text is typed).  You do not need to implement this feature for this project.






Word wrap

When the user types more text than will fit horizontally on the screen, your editor should wrap the line.  We have provided a detailed explanation of how word wrap should work below, but before reading this, we suggest that you do some of your own experimentation in your editor of choice (e.g., Google Docs).  Experimenting yourself will give you a better intuition for the feature, and is more fun than reading the text below!


Breaking a line between words

When possible, lines should be broken between words (i.e., when there is a space or a newline).

You should implement word wrap greedily: fit as many words as possible on the current line before starting a new line.  As a user is typing, you should wrap the current word onto a new line as soon as the word is too long to fit onto the current line.  For example, consider the text below.

[image: wordwrap_pre_wrap]

When the user types the next letter, “e”, the “e” won’t fit onto the current line (taking the 5 pixel margin into account).  As soon as the user types “e”, the entire word should be moved to the next line

[image: wordwrap_post_wrap]

You should also greedily word-wrap when inserting characters into the middle of a line or even into the middle of a word! Remember that when inserting characters into the middle of a word, the new character might fit on the current line, but the characters in the rest of the word might add too much width for the entire word to fit on the current line.

Finally, you should greedily wrap words when deleting.  If a user deletes characters from a word such that the word would fit on the previous line, the word and cursor should both move back to the previous line.  For example, in the example above, if the user deleted the “e”, the “ev” should be moved back to the previous line, where they were before the “e” was added.  Similarly, if a user deletes text in the middle of a line such that the first word on the next line would fit on the current line, that word should be moved back to the current line.  For example, if the user started deleting “and longer” from the text in the example, the “eve” should be moved back to the first line as soon as it fits:

[image: wordwrap_un_wrap]

Whitespace characters should be treated specially when wrapping lines: whitespace characters at the end of a line should never be wrapped onto the next line, even if they do not fit on the current line.  If the user types whitespace at the end of a line that extends beyond the allowed text area, the cursor should stop at the edge of allowed text area (i.e., the edge of the screen, minus 5 pixels for the margin), even as the user continues to type more whitespace.  The line should only wrap when non-whitespace characters are typed.  Your editor must keep track of that whitespace, so that if the word before the whitespace wraps onto a new line, the correct amount of whitespace is displayed after that word.  If you’re confused about this, we suggest experimenting with Microsoft Word, Google Docs, or TextEdit.  Note that the only type of whitespace that you need to handle is spaces resulting from the user pressing the space bar.




Breaking a line in the middle of a word

You should only break a line in the middle of a word when the word is too long to fit in its own line.  Consder the following example, where the user starts typing a long word:

[image: long_word_1]

First, the long word will get wrapped onto its own line:

[image: long_word_2]

Eventually, the word will be too long to fit on one line, so the line should break in the middle of the word:

[image: long_word_3]

If the word keeps getting longer, line breaks should keep being added as necessary:

[image: long_word_4]

TIP: Implementing word wrap is easiest if you do it from the very beginning of a file.  Each time a letter is added at the end of a word, you can check to see if that word needs to move to the next line.  Always starting from the beginning of the file is much easier than figuring out how to adjust the word wrapping when characters are added or deleted mid-word or mid-line.






Open and Save

As mentioned in the command line arguments section, the first command line argument passed to Editor must be the name of a file to edit, and this argument is required.  If that file already exists, Editor should open it and display its contents (with the starting cursor position at the beginning of the file); otherwise, Editor should begin with an empty file.  Presing shortcut+s should save the text in your editor to the given file, replacing any existing text in the file.  If you encounter an exception when opening or writing to the file (e.g., because the user gave the name of a directory as the first command line argument), your editor should exit and print an error message that includes the filename (for example, “Unable to open file nameThatIsADirectory”).  Beware that if you attempt to read from a file that doesn’t exist, Java will throw a FileNotFoundException, which is the same kind of exception you’ll get if you try to read from a directory. Check out CopyFile.java for an example of how to determine if a file exists before attempting to read from it.

Opening a file should take time proportional to the length of the file, not to the length of the file squared.  As a reference point, in our example text editor, opening a file with about 2000 characters took less than one second.  If your editor takes, for example, a little over a second for a similarly sized file, that is fine, but it should not take a lot more than a second (e.g., it should not take 30 seconds).

You can assume text files are represented as ASCII.  This means that if you read from the file, e.g., using a BufferedReader called myReader, you can cast the result to a char:

char readChar = (char) myReader.read()





For more about BufferedReaders, checkout the CopyFile.java example, or the official documentation [https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html].

TIP: Implement save and open as early as possible! These make it much easier to test other features like word wrap and handling mouse clicks.




Scroll bar

Your editor should include a scroll bar on the right side of the screen that can be used to scroll through a document that doesn’t all fit on the screen at once.  When the scroll bar is at the top position, the top line of text should be at the top of the screen; when the scroll bar is at the bottom position, the bottom line of text should be at the bottom of the screen. You do not need to implement optimizations to avoid rendering text that is not currently visible on the screen.

TIP: If you’re struggling with the scroll bar, after reading the writeup below, take a look at this page for some extra tips on how it works.


The scroll bar and the cursor

Moving the scroll bar should not move the cursor.  So, it’s possible for the user to move the scroll bar such that the cursor is currently off of the screen (because it’s at a position that’s not currently visible).  However, if the cursor is off of the screen and then the user starts typing (e.g., typing a new letter), the window should “snap” back to a location where the cursor is visible (you can play around with other editors like Google Docs to see this functionality in action).  When you’re “snapping” the window back so that the cursor is visible, you should perform the minimum adjustment so that the cursor is visible.  If the cursor is below the currently visible text, the scroll bar and window position should adjust so that the cursor is on the bottom line of visible text.  If the cursor is above the visible text, the scroll bar should adjust so that the cursor is on the top line of visible text.  Note that you should only do this adjustment if the user starts typing; if the user is just scrolling with the scroll bar, it’s fine for the cursor to be off of the screen.

If the user moves the cursor (e.g., with the arrow keys) such that it is off of the visible screen, the scroll bar and window position should automatically adjust so that the cursor stays visible. As above, your editor should use the minimum adjustment that maintains visibility of the cursor.

TIP: When the scroll bar moves, you need to move all of the text in the document.  You could move each text object individually, but your life will be much easier if you create a new Group (e.g., called textRoot) that’s a child of your application’s root Group and a parent of all of the Text nodes.  To do this, you can add textRoot as a child of your application’s root:

Group textRoot = new Group();
root.getChildren().add(textRoot);





And then add all of your Text nodes (and the cursor) as children of textRoot rather than as children of root. (JavaFX will display all Nodes that are children of the root, children of the root’s children, and so on.)  When you want to move all of the text, you can just move the textRoot object. For example, to shift the text position up by 10 pixels (so that 10 pixels are hidden above the window), you would do:

textRoot.setLayoutY(-10);





If you’re not sure how this works, do some HelloWorlding to experiment!




Rounding

As with text positions, you should always round the position of the window (when adjusted with the scroll bar) to be an integral number of pixels.  For example, if the scroll bar’s position dictates that the window should be shown so that 8.2 pixels are hidden at the top (i.e., so the window begins 8.2 pixels down into the document), you should round this to 8 pixels.




Non-requirements

You only need to handle changes to the scroll bar that are initiated by clicking somewhere on the scroll bar, as in the ScrollBarExample code.  You do not need to move the scroll position as a result of mouse wheel events.

You may notice that the default scroll speed is very slow.  You’re not required to fix this, but if you’re interested, take a look at the setUnitIncrement and setBlockIncrement methods in the ScrollBar class.






Undo and Redo

Your editor should support undo (when the user presses the shortcut key and the “z” key simultaneously) and redo (when the user presses the shortcut key and the “y” key simultaneously.  You should keep a stack of up to 100 undo events, but you should not store any more undo events than this (if you never deleted old undo events, your stack of events to undo could grow to be unbounded!).  Your editor should also support re-doing any events that have been un-done.  For example, suppose the user does the following actions:


	Types “a” (editor should show “a”)

	Types “d” (editor should show “ad”)

	Deletes “d” (editor should show “a”)

	Types “b” (editor should show “ab”)



Now, undo / redo should work as follows:


	Undo (editor should show “a”)

	Undo (editor should show “ad”)

	Undo (editor should show “a”)

	Redo (editor should show “ad”)

	Undo (editor should show “a”)



And so on.  As soon as a user does a new action that is not an undo or redo, redos should no longer be possible.  For example, after the sequence above, if the user adds a new letter like “z”, pressing redo should have no effect.  You do not need to explicitly limit the number of redo events that you store, because it is implicitly capped by the limit on the number of undos (try some examples in your text editor of choice if this doesn’t make sense).

Cursor movements are not considered actions that need to be undone / redone, and when you undo or redo, the cursor should be moved back to the position it was when the action originally took place.  If necessary, the scroll position should be updated so that the cursor is visible.

Font re-sizings and window re-sizings are also not considered actions that need to be undone / redone (since these don’t affect the contents of the document; they only affect how the document is shown to the user).


Non-requirements

If you experiment with undo on other text editors, you may notice that they do coarser-grained undo (e.g., undo will undo the entire last word or last line typed).  You do not need to implement this in your text editor.






Optional Beautification

If you like, you can change the appearance of the mouse in your text editor to be a text icon, like you’ve seen in other text editors.  You can do this by calling the setCursor() method [https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#setCursor-javafx.scene.Cursor-] on your root Group object.  If you do this, you’ll probably also want to call setCursor to override the cursor on your ScrollBar to be the default cursor, because it looks a little funny if the cursor is the text cursor when it’s over the scroll bar. This functionality is optional because we have found that JavaFX’s implementation of this is buggy, and the cursor changes back to the default when you re-enter the window, even if you register an event to change the cursor to the text cursor every time the mouse enters the window again (if you figure out how to get this to reliably work, let us know!).  There are no additional points associated with implementing this functionality; the only reward is the joy you’ll feel at seeing the fancy cursor!






Gold Points

There are two features you can implement for gold points.  The features build on each other, so you must do them in order (i.e., you can’t just do copy / paste, because it requires selection first, to select the text to copy).


Selection (3 points)

Add a feature to your text editor to support selection: if the user presses down on the mouse, drags it across some text, and releases the mouse, the text between the start and end position should be highlighted.  Selection should work while the user is dragging (so the text should appear selected instantaneously as the user drags, before the mouse is released).  You should use Color.LIGHTBLUE as the background for highlighted text.  When the highlighted text spans multiple lines, the highlighted background should extend to the margin on all but the last line (even if the line didn’t extend to the right side of the window), as in the example below:

[image: selected_text]

When text is selected, the cursor should disappear, and where you’d normally print the cursor position, you should print the position of the leading edge of the selected text (in other words, the position the cursor would have printed, had the cursor been immediately before the selected text).

You should also handle the case where a character is input or the delete key is pressed while text is selected.  If a character is input, the selected text should all be deleted, and the character should be inserted where the selected text was.  If the delete key is pressed while text is selected, all of the selected text shoud be eliminated from the document.

If the user presses the left arrow key while text is selected, the cursor should appear at the beginning of the selection; pressing the right arrow key should cause the cursor to appear at the end of the selection.  If the up arrow key is pressed, the cursor should move up from the beginning of the selection (so it should appear one line higher than the beginning of the selection, at the closest horizontal position to the horizontal position of the beginning of the selection).  Similarly, if the down arrow is pressed, the cursor should move one line down from the end of the selection, to the horizontal position closest to the horizontal position of the end of the selection.

Undo and redo should still work after you’ve implemented selection. Pressing undo should undo one action from the perspective of the user.  For example, if the user had some text selected and then pressed “a” to replace the selected text, and then presses undo, the “a” should be eliminated and the text should appear selected again.




Copy / Paste (2 points)

Add copy/paste functionality to your editor: when the user presses shortcut+c, any selected text should be saved to the system clipboard, and when the user presses shortcut+v, the text on the system clipboard should be added to the editor at the current location.  Because you’re adding things to the system’s clipboard, pressing shortcut+v should paste any text copied in a different application into your text editor, and similarly, if you copy something in your editor, you should be able to paste it in a different application.  Take a look at ClipboardExample to see how to interact with the system clipboard.

Undo and redo should work for pasting: if the user pastes some text into the document, and then presses shortcut+z, all of the pasted text should be removed.






Extra Credit Autograder

A basic autograder is available that tests that your printed cursor position is correct under the following circumstances:


	At program startup (AGInitialCursorTest).

	After typing text that fits on one line (AGSimpleTextTest).

	After typing text and backspacing (AGBackspaceTest).

	After typing text and using left and right arrow keys (AGArrowKeyTest).

	After typing text that involves newlines (AGNewlineTest).



To get the autograder, pull from skeleton using git pull skeleton master. To run one of the five autograder tests, just run the class file, e.g.:

$ java editorTester.AGInitialCursorTest





These tests will only work correctly if:


	Your code prints the current cursor position when shortcut+p is pressed.

	Your code does not print anything else to the screen, other than the cursor position when shortcut+p is pressed.



Of course, you’re welcome to print anything you’d like so long as you specify “debug” as the second command line argument. Our test files will not use this argument, so such print statements will not interfere with the grader.

Completing these tests by 3/2/16 at 11:59 PM will yield 0.2 bonus points per test.

####Submission for Basic Autograder

To get credit for passing the tests, run the editorTester tests with the optional command line argument “gradescope”. For example:

$ java editorTester.AGInitialCursorTest gradescope





You will be prompted to enter your gradescope email address. If you are not prompted, repull from skeleton since you have the old version of the autograder. Enter it exactly like your account from gradescope. If your test is successful, a file called TokenAGInitialCursorTest.java will be generated.

Run this for each of the five tests, and if you pass all of them you’ll generate 5 distinct tokens.

Simply upload these to gradescope for credit. Warning: Do not provide tokens for other students in the class. If we happen to catch you, this will be considered a failing grade in the course, as per our course plagiarism policy.

5:00 PM: At present the test will only work if you submit all 5 tokens, but I’ll be fixing this very soon.

Tokens are due 3/2/2016 at 11:59 PM, barring any infrastructural issues that I am unable to fix due to travel.




Submissions

For information about submitting your assignment, see this Piazza post [https://piazza.com/class/iiklg7j9ggf2vl?cid=3647].  For a rough point breakdown and information about how your project will be graded, see this Piazza post [https://piazza.com/class/iiklg7j9ggf2vl?cid=3448].




Frequently Asked Questions


Does my editor need to support any non-text keys not mentioned in the spec (e.g., the tab key)?

No, you do not need to support any additional key presses beyond the ones mentioned in the spec.




What about the delete key, which deletes the character in front of the cursor on some operating systems?

You do not need to handle this special delete functionality; you only need to handle the backspace key (which removes the character behind the cursor).




How can I efficiently append to a String?

You shouldn’t need to append to a String for this assignment!  If you’re just curious, Strings are immutable, so if you want to efficiently construct a string by appending substrings to it, you can use a StringBuilder (but to reiterate, you should not be appending to Strings or using StringBuilders for this assignment!).




My Text / Rectangle / other Node isn’t appearing on the screen!

Make sure you’ve added the new Node to the scene graph; e.g., root.getChildren().add(<new thing>).




What is this mysterious root and why do I need to change its children? (or: what are Groups?)

Before talking about root, it’s helpful to describe JavaFX Nodes.  JavaFX uses the Node abstract class to represent, essentially, “something that should be displayed on the screen.”  All of the things you display – Rectangles, Text, Groups, etc. – are subclasses of Node.  Checkout the Node documentation here: https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

root is a special Node that JavaFX uses to determine what to display in the window.  Each JavaFX application has exactly one Scene (you can think of the Scene as a container for all of the JavaFX “stuff”), and each Scene has exactly one “root” node (“root” is just a naming convention used for this special Node).  JavaFX uses the root node to determine what do display: JavaFX displays the root node, and all of the children of the root node, and all of the children of the children, and so on.  This is why when you add a new Node (e.g., a Text object), you need to do this funny “root.getChildren.add(..)” call: this call adds your new Node as a child of “root” so that it will be displayed. This page [http://docs.oracle.com/javafx/2/scenegraph/jfxpub-scenegraph.htm] talks in extensive detail about the scene graph; just looking at figure 1 is probably most useful.

A Group is a special kind of Node that can have children.  Usual nodes (e.g., Text nodes) can’t have any children.  You’ll notice that the root is actually a Group (in the examples, we create it with something like Group root = new Group()).  It can be useful to create a Group if you want to style a bunch of nodes together.  For example, you can make a Group called “thingsIWantToMove”, and when you adjust the layout position of “thingsIWantToMove”, it will change the layout of all of the children of the “thingsIWantToMove” Group.  For example:

Group thingsIWantToMove = new Group();
root.getChildren().add(thingsIWantToMove);
Rectangle rectangleToMove = new Rectangle(10, 10, 10, 10);
Rectangle secondRectangleToMove = new Rectangle(20, 20, 20, 20);
thingsIWantToMove.getChildren().add(rectangleToMove);
thingsIWantToMove.getChildren().add(secondRectangleToMove);





Notice that rectangleToMove and secondRectangleToMove were both added as children of thingsIWantToMove rather than as children of root.  Since thingsIWantToMove is a child of root, these rectangles wil still be displayed on the screen.  Now, you can change the position of thingsIWantToMove, e.g.,

thingsIWantToMove.setLayoutX(30);





This call will change all of the children of thingsIWantToMove to be shifted to the right by 30 pixels.  Note that rectangleToMove.getX() will still return 10 (the original value it was set to be), but rectangleToMove will be displayed at an x-position of 10 relative to the position of its parent.  Since its parent is at an x-position of 30, rectangleToMove will be displayed at an absolute x-position of 40 (i.e., it will be 40 pixels to the right of the edge of the window).  It will likely be helpful to do some “hello worlding” to understand how groups and layout positions work, where you make a simple example (much simpler than your editor!) just to experiment with.

Groups may be useful when you’re implementing the scroll bar, as hinted at in that section of the spec.




What do you mean by “render”?  How do I re-render things?

By “render”, we mean draw all of the text on the screen.  As described above, in JavaFX, to display a Node on the screen, it needs to be added as a child of root (or one of root‘s children, or one of the children of one of root‘s children, and so on).  JavaFX displays all of the children, grandchildren, etc. of root automatically; you don’t need to call any special functions to make this happen.  You may be wondering how to change something once it’s already been placed on the screen.  For example, suppose you add a rectangle to the screen:

// Make a 5x5 rectangle at position 0, 0.
Rectange funGrowingRectangle = new Rectangle(0, 0, 5, 5);
root.getChildren().add(funGrowingRectangle);





And then later, you decide you’d like to make the rectangle larger.  One way to do this is to remove the rectangle from the children of root and then re-add a new one:

root.getChildren().remove(funGrowingRectangle);
// Make a 10x10 rectangle as position 0, 0.
Rectangle biggerFunnerGrowingRectangle = new Rectangle(0, 0, 10, 10);
root.getChildren().add(biggerFunnerGrowingRectangle);





However, you can also change the attributes of the existing Node.  For example, after running the previous code, you could change the size of biggerFunnerGrowingRectangle with:

biggerFunnerGrowingRectangle.setWidth(30);
biggerFunnerGrowingRectangle.setHeight(30);





And voila, you will see a rectangle with a width and height of 30! The call getChildren().add(biggerFunnerGrowingRectangle) added a pointer to biggerFunnerGrowingRectangle to the children, so changing properties of biggerFunnerGrowingRectangle means that the Rectangle shown on the screen will change accordingly (JavaFX will always display all nodes reachable from root, using the current properties of those nodes).  When we say that rendering should take linear time, we mean that updating all of the JavaFX objects (e.g., their positions, the font size, etc.) should take linear time.




How can I remove Nodes from the screen?  Is it ok to remove all of the children of root and re-add them each time?

You can remove Nodes from the screen with the remove function.  For example, suppose you have added the letters “H”, “u”, and “g” to the screen, and then want to remove the “u”.  You could do that as follows:

Text letterOnLeft = new Text("H");
root.getChildren().add(letterOnLeft);
Text letterInMiddle = new Text("u");
root.getChildren().add(letterInMiddle);
Text letterOnRight = new Text("g");
root.getChildren().add(letterOnRight);

// ... sometime later, delete the middle letter.
root.getChildren().remove(letterInMiddle);





You should not remove things by clearing all of the children of root and re-adding them each time, for example, with code like this:

// Do not do this!
root.getChildren().clear();
root.getChildren().add(letterOnLeft);
root.getChildren().add(letterOnRight);





This strategy will be prohibitively slow when editing a large file.




I want to add something as a child of root but I can’t get access to root in the location where I want it!

If you worked off of one of our examples, you probably created root with a call like:

Group root = new Group();





in your Editor class’s start() function.  You may later have some other function in Editor where you want to use root:

public void drawCow() {
    Cow myCow = new Cow("Clover");
    root.getChildren().add(myCow);
}





If you haven’t changed anything else in your Editor, this code will cause a compile-time error because root cannot be found.  This error may seem vexing because root and the start() method are these mysterious JavaFX constructs, but remember your old friend the instance variable!  You can use an instance variable in your Editor class to save the value of root, if you like, just like you’ve used instance variables in the past to save variables that are needed in many places in your class (e.g., the array that you used to store data in ArrayDeque).  For example, you could add something at the top of your Editor class like:

public class Editor extends Application {
    Group root;
    ...





and then in your start method, you can set the root instance variable rather than creating a new root variable:

root = new Group();





If you’d like, you can also create a no-argument constructor for your Editor class where you initialize root:

public Editor() {
    root = new Group();
}





Then, in start(), you can use the root instance variable (e.g., when you’re making a Scene) rather than creating a new root variable.  JavaFX will call the no-argument constructor of your application for you (before start() is called).  For an example, checkout SingleLetterDisplay.java, which uses a no-argument constructor to set up some instance variables.

Maybe you want to use root in a different class, e.g., the CowDrawer class:

public class CowDrawer {
    // The cow to draw.
    Cow cow;
    public CowDrawer() {
        cow = new Cow("Bluebell");
        root.getChildren().add(cow);
    }
}





Again, you’ll get a compiler warning.  Remember that root is just like any other variable, and if you want to let other classes have access to it, you’ll need to explicitly tell those classes about it, e.g., by making it a constructor variable:

public class CowDrawer {
    // The cow to draw.
    Cow cow;
    public CowDrawer(Group root) {
        cow = new Cow("Bluebell");
        root.getChildren().add(cow);
    }
}





This new code will compile, and the code that creates CowDrawer will need to pass the root variable into the constructor.




What does this error mean? “Caused by: java.lang.NullPointerException: Children: child node is null: parent = Group@4490e1f7[styleClass=root]“”

This typically means you’re trying to add a Node to the scene graph (e.g., using something like group.getChildren().add(<new node>)) that’s null or not completely initialized.




Can I use methods from the swing or awt or <insert your favorite other graphics library here>?

No.




Can I use Java Libraries?

You’re welcome to use Java libraries for data structures like Lists, Queues, etc.  You can also use Java libraries for reading from and writing to files.  As mentioned in the previous question, you should not use any graphics libraries other than JavaFX.




Can I use code that I found online and that’s not from a Java library?

In general, no; other than the Java libraries, all of the code used for this project should be your own.  If you have a specific use case that seems questionable, feel free to post on Piazza.




Can I use functionality from earlier projects, even though I worked with a partner on those projects?

Yes.




I added a ChangeListener to ScrollBar to listen for when the user scrolls, but this listener gets called even when my code initiates a change to the value of the scroll bar! How do I avoid this?

When you add a listener that listens for changes to the value of the scroll bar, that listener’s handle function will be called even when your code (and not the user) initiated a change to the value.  One way to avoid this to store the value that your code has set the scroll position to be. Then, in handle(), you can check whether the new value is the same value that your code already set.




I’m carefully placing the scroll bar at the edge of the window, but there is this ugly border of a few pixels to the right of the scroll bar.  HALP.

This seems to be a bug with JavaFX; this happened for us too (you’ll notice this border in all of the examples above).  Sometimes the border magically goes away when the window is re-sized.  Don’t worry about this.




Can I use JavaFX’s ScrollPane instead of ScrollBar?

No. We did some experimenting with ScrollPane and found that it was easier to implement the editor using a ScrollBar.  We realize you may not agree, but allowing people to use different kinds of scrolling functionality makes it difficult to grade the assignments, because the different scroll functionalities take up different amounts of horizontal space on the screen.  Sorry!




The bar (sometimes called the “thumb”) in my scroll bar seems really small. Is this normal?

Yes.  JavaFX creates a scroll bar that’s always the same wee size by default.  If you’d like, you can set the size of the scroll bar using the setVisibleAmount method, but this is not required, and it is tricky to get right.

As an aside, if you get really excited about scroll bars (who wouldn’t be?), you can write your own scroll bar using one of Java FX’s rectangles, and setting the arc properties on the rectangle to get rounded corners.  You can use this functionality to create a fancy minimalist scroll bar (just a dark-grey rounded rectangle on the right side of the screen), and register mouse properties so that dragging the scroll bar changes the position of the text. This is entirely a fun experiment, and not something you should turn in with your assignment, because it will break the grading of your assignment.




I’m getting an error from JavaFX that says duplicate children were added.  What does this mean?

This error is happening because you’re adding the same Node object to the root twice.  For example, suppose you do something like:

Text t1 = new Text("h");
root.getChildren().add(t1);





Now, if you change t1 and try to add it again:

t1.setText("hi");
root.getChildren().add(t1);





The second call will throw an error, because JavaFX recognizes that t1 is already in children.  JavaFX displays all of the nodes that are children of root, or children of children of root, and so on.  If you change a node that is already reachable from root (e.g., in the example above, if you change the string stored in t1), JavaFX will update the displayed text automatically.  If you want to add another piece of text to root, you should do something like:

Text t2 = new Text("my new text");
root.getChildren().add(t2);








Pressing command+equals (or command+minus) causes three events to happen, so my font increases (or decreases) by 12 rather than 4. What’s going on?

This seems to be a bug issue with the way some keyboards / operating systems interact with JavaFX.  Try running KeyPressPrinter to see what happens when you press shortcut and the offending key (some folks have had this problem with the equals/plus key, and others have had this problem with the minus key). For example, if you’re having this problem with equals, run KeyPressPrinter and press shortcut+equals.  If you see output that looks like:


  
    
    
    Navigation
    
    

    
 
  
  

    
      
          
            
  ~ number: 3b
~ title: Installing the 61B Libraries


Navigation


	Introduction

	Windows

	OS X, Unix/Linux






Introduction

Starting with lab3, you’ll need to have your computer setup to use the Spring 2016 Java libraries.

To download the files, all you need to do is pull from the skeleton repository using git pull skeleton master. At the time of this writing (2/3/16), your javalib directory should contain the following files:


	61b_checks.xml

	algs4.jar

	checkstyle-5.9-all.jar

	hamcrest-core-1.3.jar

	jh61b.jar

	junit-4.12.jar

	reflections-0.9.9-RC1-uberjar.jar

	stdlib-package.jar

	stdlib.jar

	style61b.py






A. Windows Setup


	Pull from the skeleton repo and verify that you’ve received a lib folder containing the files listed above.



	Create a CLASSPATH environment variable pointing to the lib folder.  As we did in Lab 1b, we will do this by updating our environment variables.


	Windows 10/8/8.1: Launch the Start Screen by pressing Windows, and type ‘Environment Variables’.  Select “Edit the system environment variables”.

[image: Windows 8.1 Search]

Windows 7 and earlier: Open the Start Menu and launch the “Control Panel”.  Search for “Environment Variables”, and select “Edit the system environment variables”.

[image: Windows 7 Control Panel]



	Navigate to the “Advanced” tab, and click “Environment Variables...”.

[image: System Properties]



	Under “System variables”, click “New...”

[image: System Variables]



	Define the following variables – if the variable already exists, select the variable and click “Edit...”, then add the value specified below to the front of the value, followed by a semicolon; otherwise, click “New...” and use the values specified below as the value of the variable:


	CS61B_LIB: Set this to the location which contains your library JAR files (e.g. stdlib-package.jar).  This is the location you specified in step 1.  In my case, I have specified the location C:\cs61b_libraries. Since you downloaded the libraries using git, your directory will probably be something more like C:\users\potato\61b\bxz\lib.

Warning: If the path to the above directory contains space(s), you will need to surround the Variable value with double quotes, i.e. `“C:\Some Path With Spaces”.

[image: Define Environment Variable]



	CLASSPATH: Set this to %CLASSPATH%;%CS61B_LIB%\*;.;











	Press OK to save these settings, and OK again to close the dialog for System Properties.  Restart any open Git Bash/Command Prompt/Cygwin windows that you have open and you should be good to go. To verify that your setup works, try compiling the ArithmeticTest.java file from lab2. If this file compiles, everything is working as expected.








B. OS X and Unix Setup

Video Instructions [https://youtu.be/17-okNrio1U] (Spring 2016)


	Navigate to your repository in the command line, pull from the skeleton repo with git pull skeleton master, and verify that you have a javalib folder containing the jar files listed above.



	Navigate to the javalib folder in your repository and enter in the command pwd. You should get something that looks like /Users/Dennis/school/cs61b/sp2016/aaa/javalib. Copy this to somewhere!



	Set up a CLASSPATH environment variable that points to the javalib folder. To do this:


	Open the file .bash_profile in your home directory. Since the filename starts with a period, it counts as a “hidden file”, and will not appear in your Finder window. Annoyingly, there is no “show hidden files” option in Mac OS X, so I recommend opening this file by creating a terminal window and entering the command pico ~/.bash_profile. This will open the pico editor, which is fairly easy to use (compared to vim or emacs). Or you can use sublime or whatever else you’d like to use.

![Opening Pico](img/open_pico.png)







	Copy the result you got from step 2 above.



	Scroll to the bottom of your .bash_profile file. If it is empty, this is fine. It just means that you didn’t have one yet. At the bottom of your .bash_profile file, add: export CS61B_LIB_DIR="[paste result from step 2 above]/*" (note the /* at the end), but with the directory name adjusted to match the location of your javalib folder. So, if I use the result that I got above, I would add export CS61B_LIB_DIR="/Users/Dennis/school/cs61b/sp2016/repo/javalib/*" to my .bash_profile file. This creates an environment variable called CS61B_LIB_DIR.



	Now add a line to the bottom of your .bash_profile file that says export CLASSPATH="$CLASSPATH:$CS61B_LIB_DIR:./". This creates an environment variable called CLASSPATH. Everytime you use javac, it will look in the directories given by the CLASSPATH for library files (you do not need to manually import libraries in Java code).



	Check to make sure your .bash_profile is correct. Starting from an empty .bash_profile, I would end up with this at the bottom of my file:

 export CS61B_LIB_DIR="/Users/Dennis/school/cs61b/sp2016/aaa/javalib/*"
 export CLASSPATH="$CLASSPATH:$CS61B_LIB_DIR:./







	Press Ctrl-O to save. Then press Ctrl-X to exit pico.



	If you’re using Linux (or maybe even an older version of Mac OS), you may need to repeat steps 1-6 above, but now also putting everything in a file called .bashrc. So, you’ll want to edit your .bashrc file instead, with pico .bashrc, then copy and paste the same contents as above.







	Restart any terminal windows you have open.



	Open a new terminal window and verify that your code is working by compiling ArithmeticTest.java from lab3 with javac ArithmeticTest.java. If this works without errors, then your computer is properly configured.





Note: For Unix users, you might need to tweak these steps slightly if you’re using a different shell than Bash. If you don’t know what that means, then these directions should almost certainly work (but have not been tested).





          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  If you went to lecture 1, use the lecture 1 magic word.
If you went to lecture 2, use the lecture 2 magic word.
If you went to the hkn office, use the hkn magic word.



          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 1c
~ title: Data Structures Part 3

This is the third part of project 1. The deadline is 2/11.

This project is brand new. Please let us know on Piazza if you spot any bugs or issues.


Introduction

In project 1c, you will build a program that uses the Deque classes to find English words with interesting properties. We will provide the following files for your use:


	CharacterComparator.java: An interface for comparing characters.

	LinkedListSolution.java: A correct implementation of LinkedList.

	PalindromeFinder.java: Class that helps identify cool words in English.



In addition, you should download a list of English words from this link [http://joshh.ug/words].

For this project, you are allowed to work with a partner, and your partner must be the same as you had for part a and part b. If you wish to dissolve your partnership from part a or part b, please send an email to the course staff for approval.

Unlike projects 1a and 1b, this mini-project is highly-scaffolded in order to maximize the time you spend thinking about core course material (HoFs, interfaces) vs. general system design and debugging.




Getting the Skeleton Files

As with previous assignments, pull the skeleton using the command git pull skeleton master.

If you’re using IntelliJ make sure to reimport the project.

For this assignment, you’ll be working with Deques. You are welcome to use your LinkedListDeque, your ArrayDeque, or the provided LinkedListDequeSolution.java. If you’re not sure if your solution to project 1a is correct, feel free to use LinkedListDequeSolution.java instead.




Phase 0: The Deque Interface

Later in this assignment, you will write methods that return and accept Deque objects as inputs. Rather than create separate methods that deal with ArrayDeques and LinkedListDeques, we’ll instead have them operate on objects of type Deque, which we’ll define as an interface.

Create an interface in Deque.java that contains all of the methods that appear in both ArrayDeque and LinkedListDeque. See the project 1a spec for a concise list.

After creating this interface, modify any Deque implementation you intend to use for later parts of this project (LinkedListDeque, ArrayDeque, or LinkedListDequeSolution) so that they implement the Deque interface. Add @Override tags to each method that overrides a Deque method.

Note: If you’re using LinkedListDequeSolution, which relies on some inheritance black magic, your class definition should look like public class LinkedListDequeSolution<Item> extends LinkedList<Item> implements Deque<Item>.




Phase 1: Basic Palindrome

Create a class Palindrome, and implement the two methods shown below:


	public static Deque<Character> wordToDeque(String word)

	public static boolean isPalindrome(String word)



The wordToDeque method should be straightforward. You will simply build a Deque where the characters in the deque appear in the same order as in the word.

The isPalindrome method should return true if the given word is a palindrome, and false otherwise. A palindrome is defined as a word that is the same whether it is read forwards or backwards. For example “a”, “racecar”, and “noon” are all palindromes. “horse”, “rancor”, and “aaaaab” are not palindromes. Any word of length 1 or 0 is a palindrome.

Tip: Search the web to see how to get the ith character in a String.

Tip: Just like how we inserted an int into an SList<Integer>, we can insert chars into a Deque<Character>.

Tip: I do not recommend writing JUnit tests for wordToDeque. Instead, use the printDeque method to make sure things look correct.

Tip: Consider recursion. It’s a more beautiful approach to this problem IMO.

Just for fun: Uncomment the main method in the provided PalindromeFinder.java class and you’ll get a list of all palindromes of length 4 or more in English (assuming you also downloaded the provided words file).




Phase 2: Generalized Palindrome

In this part, you will generalize your isPalindrome method by adding a new method:


	public static boolean isPalindrome(String word, CharacterComparator cc)



The method will return true if the word is a palindrome according to the character comparison test provided by the CharacterComparator passed in as argument cc. A character comparator is defined as shown below:

    /** This interface defines a method for determining equality of characters. */
    public interface CharacterComparator {
        /** Returns true if characters are equal by the rules of the implementing class. */
        boolean equalChars(char x, char y);
    }





In addition to adding the method above to Palindrome.java, you should also create a class called OffByOne.java, which should implement CharacterComparator such that equalChars returns true for letters that are different by one letter. For example the following calls to obo should return true. Note that characters are delineated in Java by single quotes, in contrast to Strings, which use double quotes.

    OffByOne obo = new OffByOne();
    obo.equalChars('a', 'b')
    obo.equalChars('r', 'q')





However, the two calls below should return false:

    obo.equalChars('a', 'e')
    obo.equalChars('z', 'a')





A palindrome is a word that is the same when read forwards and backwards. To allow for odd length palindromes, we do not check the middle character for equality with itself. So “flake” is an off-by-1 palindrome, even though ‘a’ is not one character off from itself.

Tip: Make sure to include @Override when implementing equalChars. While it has no effect on the function of your program, it’s a good habit for the reasons detailed in lecture.

Tip: To calculate the difference between two chars, simply compute their difference. For example 'd' - 'a' would return -3.

Just for fun: Try printing out all off-by-one palindromes of length 4 or more in English (assuming you also downloaded the provided dictionary) by modifying PalindromeFinder.java. For example “flake” is an off-by-1 palindrome since f and e are one letter apart, and k and l are one letter apart.




Phase 3: OffByN

In this final phase of the project, you will implement a class OffByN, which should implement the CharacterComparator interface, as well as a single argument constructor which takes an integer. In other words, the callable methods and constructors will be:


	OffByN(int N)

	equalChars(char x, char y)



The OffBYN constructor should return an object whose equalChars method returns true for characters that are off by N. For example the call to equal chars below should return true, since a and f are off by 5 letters.

    OffByN offby5 = new OffByN(5);
    offBy5.equalChars('a', 'f')





Just-for-fun: Try modifying PalindromeFinder so that it outputs a list of offByN palindromes for the N of your choosing.

Just-for-more-fun: For what N are there the most palindromes in English? What is the longest offByN palindrome for any N?




Phase 4 (extra credit):

Pull from skeleton, which will create a proj1d directory.

Fill out the Project 1 Survey [https://docs.google.com/forms/d/1XkbvM0iCRZReEP51htX7WTGAebXo9CqeC5pEJptbxKg/viewform]. You will be given a secret word.

Add this secret word to MagicWord1D.java in the proj1d directory, and submit to the Project 1d (extra credit) autograder.




Submission

Submit Deque.java, Palindrome.java, OffByOne.java, OffByN.java and any supporting files you require, including ArrayDeque.java and LinkedListDeque.java or LinkedListDequeSolution.java. Do not submit .class files.




Tips

None yet.




Frequently Asked Questions


LinkedListDequeSolution won’t compile.

Make sure your class definition is public class LinkedListDequeSolution<Item> extends LinkedList<Item> implements Deque<Item>.




My implementation of LinkedListDeque or ArrayDeque won’t compile.

Make sure your class definition ends with implements Deque<Item>.







          

      

      

    

  

  
    
    
    Getting the Skeleton Files
    
    

    
 
  
  

    
      
          
            
  ~ number: 4
~ title: 8 Puzzle

  

  

Getting the Skeleton Files

As usual, run git pull skeleton master to get the skeleton files.




Video Introduction

A video that I produced a couple of years ago for this assignment can be found at this link [https://www.youtube.com/watch?v=d6aRjJKDfpY&feature=youtu.be]. Some notable differences for our semester:


	You do not have to write Board.neighbors.

	Board.toString is provided.

	You do not have to write Board.isSolvable.






Introduction

In this assignment, we’ll be making our own puzzle solver! The 8-puzzle problem is a puzzle invented and popularized by Noyes Palmer Chapman in the 1870s. It is played on a 3-by-3 grid with 8 square tiles labeled 1 through 8 and a blank square. Your goal is to rearrange the tiles so that they are in order, using as few moves as possible. You are permitted to slide tiles horizontally or vertically into the blank square. The following shows a sequence of legal moves from an initial board (left) to the goal board (right).

   1  3        1     3        1  2  3        1  2  3        1  2  3
4  2  5   =>   4  2  5   =>   4     5   =>   4  5      =>   4  5  6
7  8  6        7  8  6        7  8  6        7  8  6        7  8 

initial        1 left          2 up          5 left          goal








Best-First Search

Now, we describe a solution to the problem that illustrates a general artificial intelligence methodology known as the A* search algorithm [https://en.wikipedia.org/wiki/A*_search_algorithm]. We define a search node of the game to be a board, the number of moves made to reach the board, and the previous search node. First, insert the initial search node (the initial board, 0 moves, and a null previous search node) into a priority queue. Then, delete from the priority queue the search node with the minimum priority, and insert onto the priority queue all neighboring search nodes (those that can be reached in one move from the dequeued search node). Repeat this procedure until the search node dequeued corresponds to a goal board. The success of this approach hinges on the choice of priority function for a search node. We consider two priority functions:


	Hamming priority function: The number of tiles in the wrong position, plus the number of moves made so far to get to the search node. Intuitively, a search node with a small number of tiles in the wrong position is close to the goal, and we prefer a search node that have been reached using a small number of moves.

	Manhattan priority function: The sum of the Manhattan distances (sum of the vertical and horizontal distance) from the tiles to their goal positions, plus the number of moves made so far to get to the search node.



For example, the Hamming and Manhattan priorities of the initial search node below are 5 and 10, respectively.

 8  1  3        1  2  3     1  2  3  4  5  6  7  8    1  2  3  4  5  6  7  8
 4     2        4  5  6     ----------------------    ----------------------
 7  6  5        7  8        1  1  0  0  1  1  0  1    1  2  0  0  2  2  0  3

 initial          goal         Hamming = 5 + 0          Manhattan = 10 + 0





We make a key observation: To solve the puzzle from a given search node on the priority queue, the total number of moves we need to make (including those already made) is at least its priority, using either the Hamming or Manhattan priority function. (For Hamming priority, this is true because each tile that is out of place must move at least once to reach its goal position. For Manhattan priority, this is true because each tile must move its Manhattan distance from its goal position. Note that we do not count the blank square when computing the Hamming or Manhattan priorities.) Consequently, when the goal board is dequeued, we have discovered not only a sequence of moves from the initial board to the goal board, but one that makes the fewest number of moves. (Challenge for the mathematically inclined: prove this fact.)

####Optimizations
A critical optimization: Best-first search has one annoying feature: search nodes corresponding to the same board are enqueued on the priority queue many times. To reduce unnecessary exploration of useless search nodes, when considering the neighbors of a search node, don’t enqueue a neighbor if its board is the same as the board of the previous search node.

A second optimization: To avoid recomputing the Manhattan distance of a board (or, alternatively, the Manhattan priority of a solver node) from scratch each time during various priority queue operations, compute it at most once per object; save its value in an instance variable; and return the saved value as needed. This caching technique is broadly applicable: consider using it in any situation where you are recomputing the same quantity many times and for which computing that quantity is a bottleneck operation.


Game Tree

One way to view the computation is as a game tree, where each search node is a node in the game tree and the children of a node correspond to its neighboring search nodes. The root of the game tree is the initial search node; the internal nodes have already been processed; the leaf nodes are maintained in a priority queue; at each step, the A* algorithm removes the node with the smallest priority from the priority queue and processes it (by adding its children to both the game tree and the priority queue).

[image: 8puzzle game tree]




Board

Organize your program by creating an immutable [http://cs61b.ug/sp16/materials/discussion/discussion6sol.pdf] Board class with the following API:

public class Board {
  public Board(int[][] tiles) 
  public int tileAt(int i, int j)
  public int size()
  public int hamming()
  public int manhattan()
  public boolean isGoal()
  public boolean equals(Object y)
  public String toString()  
}





Where the methods work as follows:

Board(tiles): Constructs a board from an N-by-N array of tiles where 
              tiles[i][j] = tile at row i, column j
tileAt(i, j): Returns value of tile at row i, column j (or 0 if blank)
size():       Returns the board size N
hamming():    Hamming priority function defined above
manhattan():  Manhattan priority function defined above
isGoal():     Returns true if is this board the goal board
equals(y):    Returns true if this board's tile values are the same 
              position as y's
toString():   Returns the string representation of the board. This
              method is provided in the skeleton





Corner cases:  You may assume that the constructor receives an N-by-N array containing the N2 integers between 0 and N2 − 1, where 0 represents the blank square. The tileAt() method should throw a java.lang.IndexOutOfBoundsException unless both i and j are between 0 and N − 1.

Performance requirements: Your implementation should support all Board methods in time proportional to N2 (or faster) in the worst case.




Solver

Before moving on, note that you are provided a BoardUtils.class file, which supports a public static Iterable<Board> neighbors(Board b) method. You may find this method useful for this part.

Create an immutable Solver class with the following API:

public class Solver {
    public Solver(Board initial)
    public int moves()
    public Iterable<Board> solution()
}





Where the methods work as follows:

Solver(initial): Constructor which solves the puzzle, computing 
                 everything necessary for moves() and solution() to 
                 not have to solve the problem again. Solves the 
                 puzzle using the A* algorithm. Assumes a solution exists.
moves():         Returns the minimum number of moves to solve the 
                 initial board
solution():      Returns the sequence of Boards from the initial board 
                 to the solution.





To implement the A* algorithm, you must use the MinPQ class from edu.princeton.cs.algs4 [http://algs4.cs.princeton.edu/code/] for the priority queue. Additionally, use the Manhattan priority function for your Solver.

Hint: Recall the search node concept mentioned above for using your PQ.




Solver Test Client

We’ve provided some basic code in Solver.java for you to test your solver against an input file. Do not modify this method. Puzzle input files are provided in the input folder.

The input and output format for a board is the board size N followed by the N-by-N initial board, using 0 to represent the blank square. An example of an input file for N = 3 would look something like this:

3
0  1  3
4  2  5
7  8  6





Your program should work correctly for arbitrary N-by-N boards (for any 1 < N < 32768), even if it is too slow to solve some of them in a reasonable amount of time. Note N > 1.

To test against input, run the following command from the hw4 directory after compiling:

java hw4.puzzle.Solver [input file]





So, if I tested against an input file input/test01.in with the following contents:

2
1  2
0  3





I should get the following output:

$ java hw4.puzzle.Solver input/test01.in
Minimum number of moves = 1
2
1  2
0  3

2
1  2
3  0










Submission

Submit a zip file containing just the folder for your hw4 package (similar to hw3). It should contain Board.java, and Solver.java. Due to technical limitations of this autograder, it should contain no other .java files. If you have auxiliary java files (e.g. SearchNode.java), please move these classes into Board or Solver. It’s OK if you also include BoardUtils.class.




FAQ


The autograder is complaining that graderhw4.Board objects can’t be converted to Board or something like that.

The first step of the AG swaps out any usage of Board with graderhw4.Board in your Solver.java. However, it is not smart enough to find other classes (yet). For now, move your SearchNode.java class inside of Solver.java.

Likewise, if you have style errors, it will also fail. For example, if your code says

`neighbors=BoardUtils.`





instead of

`neighbors = BoardUtils`





My string matching code will fail.




Why am I getting cannot resolve symbol ‘BoardUtils’?

You are probably compiling from the wrong folder. Compile from the “login/hw4” directory, not “login/hw4/hw4/puzzle”.

javac hw4/puzzle/*.java








What if I’m using Intellij?

File -> Project Structure -> Libraries -> (+) sign to add new Java Library -> Select your login/hw4 directory DO NOT USE login/hw4/hw4/puzzle -> OK -> OK -> OK.

These are the steps needed for Macs. I suspect there won’t be big differences for other operating systems.




Is BoardUtils.neighbors working? It looks like it only returns the initial board.

It works, but it does depend on the board being immutable [http://cs61b.ug/sp16/materials/discussion/discussion6sol.pdf].




How do I know if my Solver is optimal?

The shortest solution to puzzle4x4-hard1.txt and puzzle4x4-hard2.txt are 38 and 47, respectively. The shortest solution to “puzzle*[T].txt” requires exactly T moves. Warning: puzzle36.txt, puzzle47.txt, and puzzle49.txt, and puzzle50.txt are relatively difficult.




I run out of memory when running some of the large sample puzzles. What should I do?

You should expect to run out of memory when using the Hamming priority function. Be sure not to put the JVM option in the wrong spot or it will be treated as a command-line argument, e.g.

java -Xmx1600m hw4.puzzle.Solver input/puzzle36.txt








My program is too slow to solve some of the large sample puzzles, even if given a huge amount of memory. Is this OK?

You should not expect to solve many of the larger puzzles with the Hamming priority function. However, you should be able to solve most (but not all) of the larger puzzles with the Manhattan priority function.




Even with the critical optimization, the priority queue may contain two or more search nodes corresponding to the same board. Should I try to eliminate these?

In principle, you could do so with a set data type such as java.util.TreeSet or java.util.HashSet (provided that the Board data type were either Comparable or had a hashCode() method). However, according to Kevin Wayne at Princeton, almost all of the benefit from avoiding duplicate boards is already extracted from the critical optimization and the cost of identifying other duplicate boards will be more than the remaining benefit from doing so. In short, you’re spending tremendous amounts of memory for a relatively small runtime optimization.




Is it OK if I try to eliminate them anyway by creating a big set of all the Boards ever seen?

Maybe. Make sure your code is able to complete the puzzles below when given only 128 Megabytes of memory (see below for how to test).




What size puzzles are we expected to solve?

Here are the puzzles you are explicitly expected to solve:

input/puzzle2x2-[00-06].txt
input/puzzle3x3-[00-30].txt
input/puzzle4x4-[00-30].txt
input/puzzle[00-31].txt








The puzzles work fine on my computer, but not on the AG. I’m getting a GC overhead limit exceeded error, or just a message that the “The autograder failed to execute correctly.”

Your computer is probably more powerful than the autograder. Notably, the AG has much less memory. You should be able to complete puzzles 30 and 31 in less than a second, and they should also work if you use only 128 megabytes of memory. To run your code with only 128 megabytes, try running your code with the following command:

java -Xmx128M hw4.puzzle.Solver ./input/puzzle30.txt
java -Xmx128M hw4.puzzle.Solver ./input/puzzle31.txt
java -Xmx128M hw4.puzzle.Solver ./input/puzzle4x4-30.txt





If your code is taking longer, by far the most likely issue is that you are not implementing the first critical optimization properly. Another possiblity is that you are creating a hash table of every board ever seen, which may cause the AG computer to run out of memory.

It is not enough to simply look at your code for the optimization and declare that it is correct. Many students have indicated confidence in their optimization implementation, only to discover a subtle bug. Use print statements or the debugger to ensure that a board never enqueues the board it came from.

Situations that cover 98% of student performance bugs:


	Recall that there is a difference between == and equals.

	Recall also that the optimization is that you should not “enqueue a neighbor if its board is the same as the board of the previous search node”. Checking vs. the current board does nothing. In other words, no Node should ever enqueue its parent.

	Recall that the optimization is that a board should not enqueue its own parent! This is different than checking that it is different from the board that was dequeued two iterations of A* ago.






How do I ensure my Board class immutable?

The most common situation where a Board is not immutable is as follows:


	Step 1: Create a 2D array called cowmoo.

	Step 2: Pass cowmoo as an argument to the Board constructor.

	Step 3: Change one or more values of cowmoo.



If you just copy the reference in the Board constructor, someone can change the state of your Board by changing the array. You should instead make a copy of the 2D array that is passed to your board constructor.




Why can’t Gradescope compile my files even though I can compile them locally?

Due to the nature of the autograder, you cannot use any public Board and Solver methods that were not mentioned in the spec. Consider moving the logic into one file.




The AG is reporting a bug involving access$ or some kind of null pointer exception. What’s going on?

It’s important that your moves and solutions methods work no matter the order in which they are called, and no matter how many times they are called. Failing the mutability test, or failing only moves but not solutions tests are sure signs of this issue.






Credits

This assignment originally developed by Kevin Wayne and Bob Sedgewick at Princeton University.





          

      

      

    

  

  
    
    
    Pre-lab
    
    

    
 
  
  

    
      
          
            
  ~ number: 2
~ title: Unit Testing with JUnit and IntLists


Pre-lab


	Run git pull skeleton master in your repo. You should get a lab2/ folder.

	If you already did lab2b before today, make sure to repeat steps 1-8 to reimport your project after pulling from the skeleton.

	Lab 2b [http://cs61b.ug/sp16/materials/lab/lab2b/lab2b.html]






Introduction

In this lab, you will learn about basic IntelliJ features, Destructive vs NonDestructive methods, and IntLists.

Your job for this assignment is to run through the debugging exercises and to create methods for IntList.java.




Command Line Arguments

In lab 1, to run Year.java you ran java Year 2000. In lab 2b, you saw how to run a program but not how to input 2000 as an argument. To do so, we simply need to edit the run configuration. From the run menu, click on edit configurations.

[image: Edit Configs]

From the following menu, Make sure that your main class is Year. Put in 2000  into the program arguments field. Click ok then run the program.

[image: Year Args]




Debugger Basics

cd into the the DebugPractice directory located in the lab2 directory. You’ll notice a few colorfully named classes. You won’t have to modify any of the code here; your purpose is to successfully finish each debugging exercise by collecting all the “treasures” by performing increasingly complex debugging gymnastics.


Stroll Through the Park

Our first exercise introduces us to our core tools, the breakpoint and the step over button. In the left-hand Project view, right click on the StrollThroughThePark file (like you did to Years.java in lab 2b) and this time select the Debug option. If the Debug option doesn’t appear, it’s because you didn’t re-import your project (see steps 1-8 of lab2b).

[image: Right Click Debug]

(note that after this, the green bug button will be visible next to the green play/triangle at the top-right; you can click this bug from here on out to run the debugger).

[image: Debug at top right]

You’ll notice that the program just ran through all the lines of the program and we failed to collect any treasures; however, we want to be able to step through the code line by line. Part of this is motivated because we can only collect a treasure if we stop right on top of a treasureChest() method call. In order to stop our code at some point during the execution of the program, we can set a breakpoint by clicking on the margin to the left of the line. Try setting a breakpoint at the first line of the program then start the debugger either by right clicking the file or clicking the bug button. (Animated gif demonstration)

[image: Set breakpoint]

After running the debugger and stopping on your breakpoint on the first line, you’ll notice that the first line is now highlighted. Also pay attention to the area down below. You should see at least two tabs, the Console tab (for seeing printed output) and the Debugger tab (which shows your variables at each paused moment). I recommend dragging the Console tab to the right so it’s side-by-side with the watches tab, then drag the margin such that the Debugger and the Console tab have about the same space. Pay attention to the circled area in the bottom right of the image below and note that the Console tab is hovering there; dragging that tab there is how you put the Console in that space. (Animated gif version demo)

[image: Moving console]

Inside the Debugger tab at the bottom, hit the step over button (or hit F8); this has us move over to the next line in the code. You should notice that the variables field now has an entry for the cal variable; the variables field keeps track of all local variables that exist within the scope of the current method we’re in, in this case main.

This cal variable represents YOU, the student, as you travel on your journey through the source code using IntelliJ. You can hit the arrow next to it to see a drop-down menu of all the instance variables of cal. Hit step over to go to the next treasure chest and you’ll notice the variables of cal change as the first treasureChest line is executed. Of particular note, observe that when you use the debugger to run these lines of code, your treasures count increases!

[image: Debugger variables]

Now that you know what the step over button does, step over each line of code, collecting a treasure as you go.

Before we move on, we’d also like to point out the Resume button. Set a breakpoint at the first and last line of the main function.

[image: Breakpoint first and last]

Hit debug. But now instead of stepping into or over, hit Resume, which is the green triangle in the bottom left (hover your mouse over the button to see its name). This should let you skip to your next breakpoint. Resume will continue your program like normal until either the program finishes or it hits another breakpoint.

After clicking resume, show the instance variables of cal, and you’ll see that even though you’re at the end of the program, you didn’t get any treasures. In our debugging game, you do not earn a treasure if you run past a treasureChest.




Journey to Almost the Center of the Earth

Taking a look at this program, you’ll notice that the treasures are nested within methods; you’ll have to “dig” for them. How do we “dig” into a method? Well technically, we could set a breakpoint at every treasureChest() call and press resume after you hit every breakpoint; however, this isn’t enough of a challenge for Cal Ford so we’ll impose one restriction: you can only set one breakpoint at the start of the program. Set a breakpoint at line 8 (the first line of the main()), and no other breakpoints. The current line number is shown in the bottom right of the IntelliJ code editing window. With cautious steps, you have nothing to fear (except molten magma)!

How can we get to those nested treasureChests() now? If we simply step over the digForTreasure() methods, we’ll never stop over the treasureChests(). Introducing our next tool; the step into button (F7). If you step into while paused over a variable, it functions like step over and goes to the next line (nothing interesting). However, if you hit step into while paused over a method, you’ll go into the body of that method.

Note: If you’re a fast clicker, you might find that you’re moving too quickly when you dig, and thus missing the buried treasures. Slow down!

[image: Mouse over step into]

Set a single breakpoint at line 8, the first line of the main() method, and gather all the treasures using only step into (F7) and step over (F8).




Escape from Soda Labs

For this exercise we add a constraint; you can only register a certain number of “hops”. Hops are recorded whenever you stop on one of the methods defined in Trial.java. There is also a bug where you may record more than one hop for every Travel method you stop on. It’s extra for you to figure out why this happens. However, to finish this exercise, the bare minimum is to stop over only the treasureChest() methods and to never step on the nothingHere() methods. Those methods are only there to distract you from your righteous path!

We’ll introduce you to one final debugging operation, step out. This is the opposite of step into; rather than going deeper into a method, it runs through the remaining lines of code in the current method, and returns you to the parent method that called your current method. Because of this return, this button is sometimes called step return, such as in Eclipse, another popular Java IDE.

Step out is useful because sometimes you only need to see how part of a program executes; once you’re done walking through the juicy parts and want to go back to the context of the method that called the function you’re currently in, you can hit step out.

Using only one breakpoint and all three step functions we’ve taught, thwart Leorge Gucas by collecting the treasures and elegantly escaping his nasty traps!

Bonus for Bosses #1: Do you see why the program registers 8 hops with the bare minimum constraints? Do this while only registering 5 hops with all of the same constraints! (Hint: you can use only 1 breakpoint but feel free to be creative as to where you place it)

Bonus for Bosses #2: Fix the code such that stopping over a method is the only way to increase the number of stops.

Bonus for Bosses #3: Try making your own little puzzle! If you come up with something particularly devious, feel free to post on Piazza and challenge the class!




Recap: Debugging

By this point you should understand the following tools


	Breakpoints

	Stepping over

	Stepping into

	Stepping out

	Resuming



However, this is simply scratching the surface of the features of the debugger! Feel free to experiment. Remember that watches tab? Why not read into what that does? Or the evaluate expressions button (the last button on the row of step into/over/out buttons)? There might be a cheeky way to cheat my games if you use that. Or perhaps look deeper into breakpoints. I personally find conditional breakpoints useful from time to time. In lab3, we will try out a couple of these features.






Application: IntLists


Introduction/Review of IntLists

As discussed in Monday’s lecture, an IntList is our CS61B implementation for a linked list of integers. It has a head and tail property. The head is the int element contained by the node, and the tail is the next chain in the list (another IntList!).

See IntList.java in the IntList directory for a refresher. We’ve added a method called list that makes it easier to create IntLists. For example, to create an IntList containing the numbers 0, 1, 2, and 3, we could use the method as follows:

    IntList myList = IntList.list(0, 1, 2, 3);
    // Creates the IntList 0 -> 1 -> 2 -> 3 -> null






	myList.head returns 0

	myList.tail returns 1 -> 2 -> 3 -> null

	myList.tail.tail.tail returns 3 -> null

	myList.tail.tail.tail.tail returns null

	Pop quiz: what happens for myList.tail.tail.tail.tail.tail? (Hint: it doesn’t successfully return something)



Observe that the IntList.list() method makes it much easier to create IntLists compared to the naive approach we used in class:

    IntList myList = new IntList(0, null);
    myList.tail = new IntList(1, null);
    myList.tail.tail = new IntList(2, null);
    myList.tail.tail.tail = new IntList(3, null);
    // One line of using IntList.list() can do the job of four lines!





Some of the following methods might be a little hard to digest at first. If you find yourself confused as to how a particular method runs, I recommend looking at the tests in IntListTest.java or adding a main method to IntList.java where you call the method in question and set a breakpoint at a line calling the method so you can walk through the code line by line, observing the state of variables as the method progresses.




Destructive vs. Nondestructive

Let’s consider a method dSquareList that will destuctively square every item in a list (similar to what we saw in discussion):

    IntList origL = Intlist.list(1, 2, 3)
    dSquareList(origL);
    // origL is now (1, 4, 9)





Here is one implementation of dSquareList():

    public static void dSquareList(IntList L) {
        while (L != null) {
            L.head = L.head * L.head;
            L = L.tail;
        }
    }





This is a classic example of a destructive method. It iterates through the list and squares each item, causing the values linked by L to change. In other words, after calling this method once on L, every element in L will be squared.

NOTE: The choice to return void rather than the original pointer to L was an arbitrary decision. Different languages and libraries use different conventions (and people get quite grumpy about which is the “right” one).

Examining the code above, we see that the origL variable contains a reference to the created IntList. This origL variable never changes. Although the L variable in dSquareList() gets reassigned all day long, because all parameter passing in method calls are pass-by-copy (remember pass-by-bits from lecture?), the origL variable is still safe and properly points to the first element. In other words, even as we continually call L = L.tail, origL always points to the beginning of the IntList.

The reason that dSquareList is destructive is because we change the values of the original input IntList.  As we go along, we square each value, and the action of changing the internal data persists (unlike the reassignment of L, which doesn’t effectively last after the method finishes).

By the end of the method, L is null, and origL is still pointing at the beginning of the IntList, but every value in the IntList that origL points to is now squared.

If these ideas don’t yet make total sense, ask a TA or lab assistant to draw a diagram of the code execution or run through it slowly with the debugger. They are here to help you! Pointers and IntLists might seem confusing at first, but it’s important that you understand these concepts!

Now, look at squareListIterative() and squareListRecursive(). These methods are both non-destructive. That is, the underlying IntList passed into the methods does not get modified, and instead a fresh new copy is modified and returned.

Look at the recursive version - try to reason why this is non-destructive. If you don’t understand this yet, you should make sure you do before proceeding.

Now look at squarelistIterative(). The iterative version of a non-destructive method is often quite a bit messier than the recursive version, since it takes some careful pointer action to create a new IntList, build it up, and return it. Try to understand what this code is doing, but don’t stress if it doesn’t all make sense right away.

Finally, look at the test method testDSquareList in IntListTest.java.  Notice that this test checks whether or not dSquareList is destructive. Note: You should run these tests using IntelliJ, not the terminal.




Implementing Destructive vs NonDestructive Methods

Finally, let’s dig in by writing our own methods: dcatenate and catenate.

Both methods take in two IntLists, and concatenates them together. So catenate(IntList A, IntList B) and dcatenate(IntList A, IntList B) both result in an IntList which contains the elements of A followed by the elements of B.

The only difference between these two methods is that dcatenate modifies the original IntList A (so it’s destructive) and catenate does not.

To complete the lab:


	Now fill in one of dcatenate() or catenate(), and run them against our tests. Revise your code until it passes our tests. Note: You should run these tests using IntelliJ, not the terminal.

	Repeat for the method you haven’t yet completed. (We recommend you do one first and finish it before you start the next, because then you’ll be able to take advantage of the similar logic)



IntList problems can be tricky to think about, and there are always several approaches which can work. Don’t be afraid to pull out pen and paper or go to the whiteboard and work out some examples! If you get stuck, drawing out the pointers can probably stimulate you back onto the path of progress. And, as always, the debugger is a great option!

Feel free to use either recursion or iteration. For extra practice, try both!

It’s also often useful to first think about base cases (when A is null, for example) - this works especially well for building up a recursive solution. In other words, write up a solution that would work for the base case, then stop and think about how to expand this solution into something that works for other bigger cases.




Complete and Submit Lab 2

You will submit IntList.java






[bookmark: recap] Full Recap

In this lab, we went over:


	Inputting command line arguments with IntelliJ

	Stepping into, over, and out inside the IntelliJ debugger (this will be handy for projects!)

	Non-destructive vs. destructive methods

	IntLists and pointers

	Writing IntList methods destrutively, non-destructively, recursively, and iteratively







          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 0
~ title: NBody Simulation, version 1.0

A heads up before you even read the introduction: We are the beta testers for Gradescope’s new grading system. There may be glitches at the beginning of the semester. Please be friendly.

Please report any errors using this autograder thread on Piazza [https://piazza.com/class/iiklg7j9ggf2vl?cid=234].


Introduction

The goal of this project is to give you a crash course in Java. CS61B is not a course about Java, so we’re going to race through the language in just 4 weeks. You’ve already taken CS61A, E7, or some equivalent course, so it’s time to get used to learning languages quickly.

Before starting this project, we are assuming that you either have prior Java experience, or have watched lecture 2 and (ideally) have also completed HW0. If you have not watched lecture 2 [https://youtu.be/sZulrKitwf8], do so now. The code that I built during that lecture can be found at this link [https://github.com/Berkeley-CS61B/lectureCode-sp16/tree/master/lec2/webvid]. You do not need to fully understand the contents of lecture 2 to begin this assignment. Indeed, the main purpose of this project is to help you build some comfort with the material in that lecture.

Unlike later projects, this assignment has a great deal of scaffolding. Future assignments will require significantly more independence. For this project, you may work in pairs. To work in a pair, you must read the collaboration guide and fill out the partner request form linked in the partnership guide [http://cs61b.ug/sp16/materials/guides/partnerships.html]. You do not need to wait for our approval to begin as long as you meet the requirements for partnerships. If you work with someone who is more experienced, you are likely to miss lots of important subtleties, which will be painful later when you start working on your own (i.e. the entire second half of the course).

All that said, your goal for this project is to write a program simulating the motion of N objects in a plane, accounting for the gravitational forces mutually affecting each object as demonstrated by Sir Issac Newton’s Law of Universal Gravitation [http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation].

Ultimately, you will be creating a program NBody.java that draws an animation of bodies floating around in space tugging on each other with the power of gravity.

If you run into problems, be sure to check out the FAQ section before posting to Piazza.  We’ll keep this section updated as questions arise during the assignment.




Getting the Skeleton Files

Before proceeding, make sure you have completed lab1 [http://cs61b.ug/sp16/materials/lab/lab1/lab1.html], and if you are working on your own computer, that you have completed lab1b [http://cs61b.ug/sp16/materials/lab/lab1b/lab1b.html] to set up your computer.

To do this, head to the folder containing your copy of your repository. For example, if your login is ‘agz’, then head to the ‘agz’ folder (or any subdirectory). If you’re working with a partner, you should instead clone your partner repository, e.g. git clone https://github.com/Berkeley-CS61B/proj0-bqd-aba

If you’re working solo, you should now be in your personal repo folder, e.g. agz. If you’re working with a partner, your computers should both be in the bqd-aba folder that was created when you cloned the repo.

Now we’ll make sure you have the latest copy of the skeleton files with by using git pull skeleton master. If you’re using your partner repo, you’ll also need to set the remote just like we did in lab1 using the git remote add skeleton https://github.com/Berkeley-CS61B/skeleton-sp16.git command.

If the folder you’re pulling into already has an older copy of the skeleton repo (from lab 1, for example), this will cause a so-called merge (see git guide for more details if you want). A text editor will automatically open asking you to provide a message on why you are merging.

Depending on what computer you’re using, you will possibly find yourself in one of two obtuse text editors:


	vim

	emacs



Both of these editors are designed with the power user in mind, with no regard for those stumbling into them by accident. Unfortunately, git will likely default to one of these text editors, meaning that the simple act of providing a merge message may cause you considerable consternation. Don’t worry, this is normal! One of the goals of 61B is to teach you to handle these sorts of humps. Indeed, one of the reasons we’re making you use a powerful real-world version control system like git this semester is to have you hit these common hurdles now in a friendly pedagogical environment instead of the terrifying real world. However, this also means we’re going to suffer sometimes, particularly at this early point in the semester. Don’t panic!

For reference, this is what vim looks like:

[image: vim]

See this link [http://stackoverflow.com/questions/11828270/how-to-exit-the-vim-editor] if you are stuck in vim. If you are in emacs, type something and then press ctrl-x then ctrl-s to save, then ctrl-x then ctrl-c to exit.

Once you’ve successfully merged, you should see a proj0 directory appear with files that match the skeleton repostiory [https://github.com/Berkeley-CS61B/skeleton-sp16/tree/master/proj0].

Note that if you did not already have a copy of the skeleton repo in your current folder, you will not be asked for a merge message.

If you somehow end up having a merge conflict, consult the git weird technical failures guide [http://cs61b.ug/sp16/materials/guides/git-wtfs.html].

If you get some sort of error, STOP and either figure it out by carefully reading the the git guide or seek help at OH or Piazza. You’ll potentially save yourself a lot of trouble vs. guess-and-check with git commands. If you find yourself trying to use commands you Google like force push, don’t.




The Planet Class and Its Constructor

You’ll start by creating a Planet class. In your favorite text editor, create a file called Planet.java. If you haven’t picked a text editor, I recommend Sublime Text [http://www.sublimetext.com/]. Remember that your .java files should have the same name as the class it contains.

Begin by creating a basic version of the Planet class with the following 6 instance variables:


	double xxPos: Its current x position

	double yyPos: Its current y position

	double xxVel: Its current velocity in the x direction

	double yyVel: Its current velocity in the y direction

	double mass: Its mass

	String imgFileName: The name of an image in the images directory that depicts the planet



Your instance varaibles must be named exactly as above. Start by adding in two Planet constructors that can initialize an instance of the Planet class. The signature of the first constructor should be:

public Planet(double xP, double yP, double xV,
              double yV, double m, String img)





Note: We have given parameter names which are different than the corresponding instance variable name. If you insist on making the parameter names the same as the instance variable names for aesthetic reasons, make sure to use the "this" keyword appropriately (mentioned only briefly in lecture and not at all in HFJ).
The second constructor should take in a Planet object and initialize an identical Planet object (i.e. a copy). The signature of the second constructor should be:

public Planet(Planet p)





Your Planet class should NOT have a main method, because we’ll never run the Planet class directly (i.e. we will never do java Planet). Also, the word “static” should not appear anywhere in your Planet class.

All of the numbers for this project will be doubles. We’ll go over what exactly a double is later in the course, but for now, think of it is a real number, e.g. double x = 3.5. In addition, all instance variables and methods will be declared using the public keyword.

Once you have filled in the constructors, you can test it out by compiling your Planet.java file and the TestPlanetConstructor.java file we have provided.

You can compile with the command:

javac Planet.java TestPlanetConstructor.java





You can run our provided test with the command

java TestPlanetConstructor





If you pass this test, you’re ready to move on to the next step. Do not proceed until you have passed this test.




Understanding the Physics

Let’s take a step back now and look at the physics behind our simulations. Our Planet objects will obey the laws of Newtonian physics. In particular, they will be subject to:


	Pairwise Force: Newton’s law of universal gravitation asserts that the strength of the gravitational force between two particles is given by the product of their masses divided by the square of the distance between them, scaled by the gravitational constant G (6.67 * 10-11 N-m2 / kg2). The gravitational force exerted on a particle is along the straight line between them (we are ignoring here strange effects like the curvature of space [https://en.wikipedia.org/wiki/Curved_space]). Since we are using Cartesian coordinates to represent the position of a particle, it is convenient to break up the force into its x- and y-components (Fx, Fy). The relevant equations are shown below. We have not derived these equations, and you should just trust us.
	F = G * m1 * m2 / r2

	r2 = dx2 + dy2

	Fy = F * dy / r

	Fx = F * dx / r







Note that force is a vector (i.e., it has direction). In particular, be aware that dx and dy are signed (positive or negative).


	Net Force: The principle of superposition says that the net force acting on a particle in the x- or y-direction is the sum of the pairwise forces acting on the particle in that direction.



In addition, all planets have:


	Acceleration: Newton’s second law of motion says that the accelerations in the x- and y-directions are given by:
	ax = Fx / m

	ay = Fy / m








Check your understanding!

Consider a small example consisting of two celestial objects: Saturn and the Sun. Suppose the Sun is at coordinates (1.0 * 1012, 2.0 * 1011) and Saturn is at coordinates (2.3 * 1012, 9.5 * 1011). Assume that the Sun’s mass is 2.0 * 1030 Kg and Saturn’s mass is 6.0 * 1026 Kg. Here’s a diagram of this simple solar system:

[image: pairwise]

Let’s run through some sample calculations.  First let’s compute F1, the force that Saturn exerts on the Sun.  We’ll begin by calculating r, which we’ve already expressed above in terms of dx and dy. Since we’re calculating the force exerted by Saturn, dx is Saturn’s x-position minus Sun’s x-position, which is 1.3 * 1012 meters.  Similarly, dy is 7.5 * 1011 meters.

So, r2</sup/> = dx2 + dy2 = (1.3 * 1012 m)2 + (7.5 * 1011 m)2. Solving for r gives us 1.5 * 1012 meters. Now that we have r, computation of F is straightforward:
  
    
    
    Table of Contents
    
    

    
 
  
  

    
      
          
            
  ~ number: 3

~ title: Bear Maps, version 1.0

~ author: Alan Yao


Table of Contents


	Introduction

	Overview

	Getting the Skeleton Files

	Rastering

	Routing

	Autocompletion and Search

	Frequently Asked Questions

	Common Bugs

	Acknowledgements






Introduction

Project 3 is a web mapping application, inspired by my time on the Google Maps team and the OpenStreetMap [http://www.openstreetmap.org/] project, from which the tile images and map feature data was downloaded. You are working with real-world mapping data here that is freely available - after you’ve finished this project, you can even extend your code to support a wider range of features. You will be writing the back end - the web server that powers the API that the front end makes requests to.

By the end of this project, with some extra work, you can even host your application as a web app, like I’ve done here [http://bearmaps.alanyao.com]. It’s hosted for free on Heroku. For better performance, shrink your window. You should expect extremely bad performance overall with six hours of downtime per day (there’s 1000+ students and one free instance!). Your project cannot perform as poorly and should have sub-0.5s response times, especially since you are hosting locally.

####Meta Advice

This spec is not meant to be complete. Many design decisions are left to you, although with suggestions given. Many implementation details are not given; you are expected to read the entirety of the skeleton (which is well-commented or self-explanatory) and the javadoc to determine how to proceed. You will especially want to read all the constants defined.

However, the spec is written in a way so that you can proceed linearly down - that is, while each feature is partially dependent on the previous one, your design decisions, as long as they are generally reasonable, should not obstruct how you think about implement the following parts. You are required to read the entire spec section before asking questions. If your question is answered in the spec, we will only direct you to the spec.

Modularize. Make sure to split your program into multiple logical parts. Here’s what my setup looks like: [image: File structure]

I don’t mind if you copy it or do something similar.




Getting the Skeleton Files

For this project we very strongly recommend using IntelliJ. If IntelliJ doesn’t work on your computer, or is too slow, consider using IntelliJ on the lab machines. If you insist, you can also use the command-line / terminal on your personal machine as further described in Addendum for Terminal users.

If you are using a Mac or Ubuntu, ensure you are Not using OpenJDK8. If you are, you may follow the instructions in lab 1b to download Oracle’s JDK 8. When you configure IntelliJ’s SDK, just make sure it’s the Oracle JDK path given.

Pull the skeleton using the command git pull skeleton master.  Then, please download this zip file [https://inst.eecs.berkeley.edu/~cs61b/sp16/img.zip]; it is the image tile dataset. Unzip it into your proj3/ folder such that there is an img/ directory, with all the png files in it. There are around 50,000 files in this folder, so it might take a bit of time to unzip.

Project 3 uses Apache Maven [https://maven.apache.org/] as its build system; it integrates with IntelliJ. You will want to create a new IntelliJ project for project 3. In IntelliJ, go to New -> Project from Existing Sources. Then:


	Select your proj3 folder, press next, and make sure to select “Import project from external model” and select Maven. Press next.

	At the Import Project window, check: “Import Maven projects automatically”.

	Press next until the end.

	It is possible that IntelliJ will not “mark” your folders correctly: Make sure to mark, if not done so already, thesrc/main/java directory as a sources root, the src/static directory as a sources root, and the src/test/java directory as a test sources root. To do this, right click on the folder in the explorer window (the tab on the left), and towards the bottom of the options you’ll see “Mark Directory As”.

	Do not add the course javalib to your IntelliJ library. You will not need it and it will cause conflicts. This also means that you cannot use any libraries outside the Java standard library and the ones already included in the project. Doing so will immediately cause a compilation error on the autograder. Notably, we are not accommodating usage of the Princeton libraries as they are unnecessary.



Build the project, run MapServer.java and navigate your browser (Chrome preferred; errors in other browsers will not be supported) to localhost:4567. This should load up map.html; by default, there should be a blank map. You can also run MapServer.java and then open up src/static/page/map.html manually by right clicking and going to Open In Browser in IntelliJ.

[image: localhost]

If you get a 404 error, make sure you have marked your folders as described in step 4 above.

Absolutely make sure to end your instance of MapServer before re-running or starting another up. Not doing so will cause a java.net.BindException: Address already in use.


Addendum for Terminal users

If you do want to use it through the command line here are some basic instructions:
Windows users: Follow the instructions here [https://maven.apache.org/guides/getting-started/windows-prerequisites.html], making sure to adjust them to your machine which should already have JDK8 installed. Use command prompt, not git bash.
Mac users: brew install maven
Ubuntu users: sudo apt-get install maven.

You can then use the mvn compile and mvn exec:java -Dexec.mainClass="MapServer" targets to run MapServer, after patching your pom.xml to include src/static as a sources root. Do so by renaming pom_alternate.xml to pom.xml. You can also run the tests with mvn test.
Choosing to work through terminal may slow down your development cycle considerably as you will not have access to the debugger.






Overview

There is a Getting Started video [https://youtu.be/J4QNk3hwcR8] that accompanies the spec. This video is completely optional, but it gives some tips and visual motivation for some of the things you’re doing in this assignment.

Firstly, we make one simplifying assumption: the world is almost flat. We will be working with longitudes (x-axis) and latitudes (y-axis); because these metrics are defined using the Mercator projection [https://en.wikipedia.org/wiki/Mercator_projection], the latitudes will be slightly distorted over long distances. We will instead only work inside a small world-region, the area surrounding Berkeley; this makes latitude distortions largely trivial and prevents you from having to deal with more complex math in your calculations. Essentially, this allows you to interpret lon and lat as x and y coordinates, and distances as linear, which is good for linear interpolation.

###Application Structure

Your job is to implement a web API. You will write a web server that hosts some endpoints that take in parameters and provide output in JSON. This might not make very much sense: let’s look at a quick example:

[image: endpoint]

It is the job of the web server to parse the URL and generate the output. The web server listens on a port and runs a loop that handles each of the incoming connections / requests. Fortunately, we don’t have to write any of the interfacing code; we will be using Java Spark [http://sparkjava.com/documentation.html#getting-started] as the server framework; you don’t need to worry about the internals of this as we are providing the skeleton code to handle the endpoints.

We are also providing you with a file, map.html, in src/static/page, which implements a basic front-end user interface. This basic Javascript application makes the necessary API calls to render a map that can be navigated around and can show routes and locations.


Testing

AGMapServerTest.java in src/test/java is a local version of our autograder that you can run. It takes in serialized validation data from test_ser_data and checks your results against it. You are not recommended to use this to drive your development; it’s to give you a sense of expected outputs based on inputs. Effective strategies for debugging do not include: running the JUnit tests over and over again while making small changes each time, staring at the error messages and then posting on piazza asking what they mean before reading the whole message and trying to interpret it; effective strategies include: using the debugger; reproducing your buggy inputs; rubber ducky debugging [https://en.wikipedia.org/wiki/Rubber_duck_debugging]. You can feel free to modify this file as you want. We will not be testing your code on the same data as is given to you for your local testing - that is, as a disclaimer, if you pass all the tests in this file, you are not guaranteed to pass all the tests on the actual autograder.

There is also a file, test.html, that you can use to test your project without using the front-end. It makes a /raster API call and draws the result. You can modify the query parameters in the file. It is not the only way you should test your project, but is there to prevent you from having to learn Javascript to test your server, and allows you to make a specific call easily. You will also find your browser’s Javascript console handy, especially when opened on map.html: for example, on Windows, in Chrome you can press F12 to open up the developer tools, click console, and enter in params to get the value of the current query parameters for the map, and route_params to get the value of the current query parameters for your route. It should look something like this:
[image: Console]

Additionally you can use Postman Interceptor [https://chrome.google.com/webstore/detail/postman-interceptor/aicmkgpgakddgnaphhhpliifpcfhicfo?hl=en]. It’s a Chrome extension with a good visual interface for setting up queries, tracking requests made by your browser, and modifying params and examining responses. It’s an industry standard and I highly recommend it.

###API Documentation

We support four GET endpoints. The request handlers defined in MapServer.java process the HTTP GET request, pulling out the requests’ required attributes and values into a Map<String, Double> and dispatches the work to methods that you implement. See the MapServer::main method and read the code: these are the various request handlers that dispatch work to the methods below and are called every time the HTTP endpoints are requested. These methods must satisfy the requirements given in the Javadoc.

You will want to read through the Javadoc. It describes all the requirements for implementation, and defines the inputs and outputs of each method. Additionally, you will want to read through the comments in the skeleton code. They explain how the server handlers invoke your methods and encode the responses. You may also find the Javadoc in the skeleton code.

Optionally, you can read through map.html, map.css, and map.js. They are not an example of good web design style, but you can see how the front-end makes the API calls.






Map Rastering

Rastering is the job of converting some information to a bit-mapped, pixel-by-pixel image. In this part, given our dataset, we raster images that fill an intersection window.

###Mapping Data

A quadtree is a tree data structure typically used to represent spatial data. A node is a square in the plane; for this project, each square node will be called a tile interchangeably, and is defined by its upper left and lower right points. Unlike a Binary Tree, a node has four children; each child is a subdivided fourth of its parent, as shown below.

[image: Quadtree]

You are provided map data in the img directory as a large set of 256x256 png image files, which I will call tiles. The filename determines the relationship between one tile and another, as shown above. Each quad-tree node corresponds to an image tile. 11.png, 12.png, 13.png, 14.png are the four quadrant subdivisions of 1.png and so on. The longitudes and latitudes of the root node, which is to be subdivided, are given to you as constants ROOT_ULLAT, ROOT_ULLON, ROOT_LRLAT, ROOT_LRLON.

For example, the upper left child of the root, represented by 1.png, shares an upper left longitude and latitude with the root, but has a lower right longitude and latitude that is at the center of the root tile, and so on - the structure is defined recursively. If a tile has no children, for example 4444444.png, there are no valid files 44444441.png and so on.

For a demo of how all this works, see this FileDisplayDemo. Try typing in a filename, and it will show what region of the map this file corresponds to, as well as the exact coordinates of its corners, in addition to the distance per pixel.

This helps construct the map since all tiles are the same resolution; you might think of traversing to a child of a node as “zooming in” on that quadrant.


Lazy Loading

To ensure that your program does not gobble up excessive amounts of memory, do not load all the images in the img/ directory into memory as BufferedImages or in any other way until they are needed for a raster (don’t instantiate the BufferedImage on construction, only on raster as needed).

###Rastering

Implement getMapRaster as described in the Javadoc. You do not need to worry about routing until the next part. When the client makes a call to /raster with the required parameters, the request handler will validate that all the required parameters are present (as declared in REQUIRED_RASTER_REQUEST_PARAMS. Then, in the Map params, those parameters are keys that you will be able to get the value of: for example, if I wanted to know the upper left point’s longitude of the query rectangle, I could call params.get("ullon").

Let us define a metric, the distance per pixel. Treat the (lon, lat) of some point on the map the same as an (x, y) point. Then the longitudinal distance per pixel covered on a tile is just (lower right longitude - upper left longitude) / (width of the image). This defines how fine or coarse the resolution of a tile is. If we cover a lot of distance per pixel on a tile, then that means the tile is more zoomed out and closer to the quadtree root; if we cover less distance per pixel, then that means the tile is more zoomed in (corresponding to being lower in the quadtree). Note that the longitudinal (horizontal) distance per pixel is not the same as the latidudinal (vertical) distance per pixel. This is because the earth is curved. If you use the wrong one, or use them interchangably, you will have incorrect results.

If you’ve represented your tile hierarchy as a quadtree, you are looking to collect all tiles that intersect (overlap) the query window that have a depth that is as close to the root as possible, but still satisfy the condition that the tiles should have a longitudinal distance per pixel less than or equal to the longitudinal distance per pixel in the query box. This enforces that one pixel in the query box is covered by at least one pixel in the rastered image - we want to be as zoomed out as possible, but don’t want to give an image smaller than the width and height given in the query box, but we don’t want our image to be the maximum resolution either. Essentially, you should be able to recursively traverse your quadtree until you find the tiles that both intersect and satisfy the distance per pixel requirement, and collect each of these full tiles with no need to crop. Take a while to think about how this method satisfies our requirements before asking a friend - it’s very confusing the first time around.

[image: Query example]

The query window shown above corresponds to the viewing window in the client. Although you are returning a full image, it will be translated (with parts off the window) appropriately by the client. There is one edge case that you may want to consider (although if you write your code naturally, it may not need to be explicitly handled): your query window in pixels may not be perfectly proportional to your query window in world-space distance (lat and lon). However, you only care about the pixels for dpp and lat and lon for intersection.

You may end up with an image, for some queries, that ends up not filling the query box and that is okay - this arises when your latitude and longitude query do not intersect enough tiles to fit the query box. You can imagine this happening with a query very near the edge (in which case you just don’t collect tiles that go off the edge); a query window that is very large, larger than the entire dataset itself; or a query window in lat and lon that is not proportional to its size in pixels. For example, if you are extremely zoomed in, you have no choice but to collect the leaf tiles and cannot traverse deeper.

You will also need to arrange these tiles. Once all the tiles are collected, they should be arranged by their order in the plane - that is, they should be placed next to each other if their corner points intersect. For example, in the shown query above, we collect a set of 4x4 tiles; this corresponds to an image of size (4 x 256) x (4 x 256) pixels.

You may find the google search results for “combine png files java [https://www.google.com/search?btnG=1&pws=0&q=combine%20png%20files%20java]” useful as a reference on how to concatenate png files together into a BufferedImage. You should write your BufferedImage im to the OutputStream os (instead of a file) using ImageIO.write(im, "png", os), for this project. When getting started, you can just write an image to the OutputStream os and set query_success to true, and it will show up on test.html; after setting the remaining return parameters, it should show up on map.html too.

After you’ve implemented this successfully, try moving around and zooming on the map - it should work. You can also try running the map raster tests in AGMapServerTest and your test.html should show:

[image: test image]




Runtime

Your constructor should take time linear in the number of tiles given.

You may not iterate through / explore all tiles to search for intersections. Suppose there are k tiles intersecting a query box, and n tiles total. Your entire query must run in O(k log k + log n) time (theoretically, on a tree of unbounded depth and size), including constructing the image. This can be broken up into two parts: O(log n) time to traverse the quadtree to where we begin collecting, and O(k log k) time to collect and arrange the intersected tiles. This should correspond to the standard quadtree traversal. It can be done faster than this, but remember that big-O is an upper bound.




Addendum

You will get latitude and longitude mixed up at least once. Make sure to check for that!






Routing

###Routing & Location Data

Routing and location data is provided to you in the berkeley.osm file. This is a subset of the full planet’s routing and location data, pulled from here [http://download.bbbike.org/osm/]. The data is presented in the OSM XML file format [http://wiki.openstreetmap.org/wiki/OSM_XML].

XML is a markup language for encoding data in a document. Open up the berkeley.osm file for an example of how it looks. Each element looks like an HTML tag, but for the OSM XML format, the content enclosed is (optionally), more elements. Each element has attributes, which give information about that element, and sub-elements, which can give additional information and whose name tell you what kind of information is given.

Parse the XML file for the necessary routing and location data. You will find the Javadocs for GraphDB and MapDBHandler helpful, as well as the example code in MapDBHandler.java, which gives a basic parsing skeleton example. I have chosen to use a SAX parser; an “event-driven online algorithm for parsing XML documents”. It works by iterating through the elements of the XML file. At the beginning and end of each element, it calls the startElement and endElement callbacks with the appropriate parameters.

Read through the OSM wiki documentation on the various relevant elements: the idea of a tag [http://wiki.openstreetmap.org/wiki/Tags], the highway key [http://wiki.openstreetmap.org/wiki/Key:highway], the way element [http://wiki.openstreetmap.org/wiki/Way], and the node element [http://wiki.openstreetmap.org/wiki/Node]. You will need to use all of these elements, along with their attribute’s values, to construct your graph for routing.

The node:
[image: node]

comprises the backbone of the map; the lat, lon, and id are required attributes of each node. They may be anything from locations to points on a road. If a node is a location, a tag element, with key “name” will tell you what location it is - above, we see an example.

The way:
[image: way]

is a road or path and defines a list of nodes, with name nd and the attribute ref referring to the node id, all of which are connected in linear order. Tags in the way will tell you what kind of road it is - if it has a key of “highway”, then the value corresponds to the road type. See the Javadoc on ALLOWED_HIGHWAY_TYPES for restrictions on which roads we care about. You can ignore all one-way tags and pretend all roads are two-way (impractical, but there are some inaccuracies in the OSM data).

This gives a natural construction of a graph. Make sure your graph does not have any disconnected nodes.

###Route Search

The /route endpoint receives four values for input: the start point’s longitude and latitude, and the end point’s longitude and latitude. Implement findAndSetRoute, so that it satisfies the requirements in the Javadoc.

Your route should be the shortest path that starts from the closest connected node to the start point and ends at the closest connected node to the endpoint. Distance between two nodes is defined as the Euclidean distance between their two points (lon1, lat1) and (lon2, lat2). The length of a path is the sum of the distances between the ordered nodes on the path. After making a request to /route, on any subsequent /raster requests before a new route or /clear_route is requested, lines of width ROUTE_STROKE_WIDTH_PX and of color     ROUTE_STROKE_COLOR are drawn between all nodes on the route in the rastered photo. Each connecting line should be drawn with the Stroke set to new BasicStroke(MapServer.ROUTE_STROKE_WIDTH_PX,BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND). See the Java documentation [https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html#setStroke-java.awt.Stroke-] on Graphics2D::setStroke. See the Java documentation [https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawLine-int-int-int-int-] on Graphics::drawLine. Recall that if you are using a BufferedImage, it has a getGraphics() method to get the Graphics object you can use to draw to that BufferedImage; this object has dynamic type Graphics2D (for setting the stroke).

If a line goes off the bounds of the BufferedImage, keep drawing and do not truncate it. Otherwise it will appear to end at the end of the image instead of continuing off of it. When computing the pixels to draw from and to (by converting from longitude and latitude), you should round down, either explicitly or by casting to int. This is an arbitrary choice. Make sure you’re using Oracle’s JDK since OpenJDK8’s drawing is different.

Implement clearRoute in MapServer.java. After calling clearRoute, calls to /raster before another /route call should not have a route drawn.


Runtime & A*

Let d be the distance between the start and end node. You cannot explore all nodes within distance d from the start node. (for long paths, this could be more than half the nodes in the map).

While Dijkstra’s algorithm for finding shortest paths works well, in practice if we can, we use A* search. Dijkstra’s is a Uniform-Cost search algorithm - you visit all nodes at a distance d or less from the start node. However, in cases like this, where we know the direction that we should be searching in, we can employ that information as a heuristic.

Let n be some node on the search fringe (a min priority queue), s be the start node, and t be the destination node. A* differs from Dijkstra’s in that it uses a heuristic h(n) for each node n that tells us how close it is to t. The priority associated with n should be f(n) = g(n) + h(n), where g(n) is the shortest known path distance from s and h(n) is the heuristic distance, the Euclidean distance from n to t, and thus the value of h(n) should shrink as n gets closer to t. This helps prevent Dijkstra from exploring too far in the wrong direction.

This amounts to only a small change in code from the Dijkstra’s version (for me, one line).


Supplemental Information

For an example of how this works, I recommend watching Professor Abbeel’s video [https://www.youtube.com/watch?v=DhtSZhakyOo], where he goes over an example of A* on a general search space.

You can also watch his CS188 lecture on Informed Search [https://www.youtube.com/watch?v=8pTjoFiICg8&t=6m40s], particularly starting from here [https://www.youtube.com/watch?v=8pTjoFiICg8&t=16m54s], from back when I took CS188. Some of the ideas expressed are outside the scope of what you need for this project - you don’t need to worry about the part where he starts explaining about optimality guarantees and heuristic admissibility if you don’t want; in a graph embedded in the plane like the one we’re working with, Euclidean distance is always admissible and consistent, and thus it guarantees optimality.








Autocompletion and Search (5 gold points)

These gold points are all-or-nothing. You must pass both the timing and correctness parts to get credit.


Locations

In the berkeley.osm file, we consider all nodes with a name tag a location. This name is not necessarily unique and may contain things like road intersections.




Autocomplete

The user may type a partial query string such as “Sushi”. Implement getLocationsByPrefix, where the prefix is the partial query string. We will work with the cleaned name for search - everything except characters A through Z and spaces removed, and everything lowercased. Return a list of the full names of all locations whose cleaned names share the cleaned query string prefix, without duplicates.

[image: Autocomplete]

I recommend using a Trie [http://www.wikiwand.com/en/Trie]. You can traverse to the node that matches the prefix (if it exists) and then collect all valid words that are a descendant of that node.


Runtime

Suppose k words of maximum length share a prefix s. Then a query for s should take O(k) time. You can assume that the lengths of the names are bounded by some constant.






Search

Implement getLocations. Collect a List of Maps containing information about the matching locations - that is, locations whose cleaned name match the cleaned query string exactly. This is not a unique list and should contain duplicates if multiple locations share the same name (i.e. Top Dog, Bongo Burger). See the Javadoc for the information each Map should contain.

[image: Selection]

This will draw red dot markers on each of the matching locations. Note that because the location data is not very accurate, the markers may be a bit off (for example, the west side top dog is on the wrong side of the street) from their real location.


Runtime

Suppose there are k results. Your query should run in O(k).








Possible Extensions (optional)

There are some inefficiencies with the current design of this project that set it apart from conventional mapping applications like Google Maps.


Front-end Integration

Currently, you raster the entire image and then pass it to the front end for display, and re-raster every call. A better approach, and the one that popular rastering mapping applications nowadays take, would be to simply pass each tile’s raster to the front end, and allow the front-end to assemble them on the page dynamically. This way, the front-end can make the requests for the image assets and cache them, vastly reducing repetitive work when drawing queries, especially if they use tiles that have already been drawn before.

Likewise, the front end could handle route drawing as all the back-end needs to pass to the front-end are the points along the route.

However, this poses a major problem to the project’s design - it overly simplifies the amount of work you need to do and moves a large amount of the interesting work to the front-end, so for this small project you implement a simplified version.




Vectored Tiles

While for this project I’ve provided the mapping data in the form of images per tile, in reality these images are rastered from the underlying vector geometry - the roads, lines, filled areas, buildings and so on that make up the tile. These can all be drawn as triangles using a rendering API like OpenGL or WebGL; this speeds up the process even more, as much of the work is now passed on to the GPU which can handle this far more efficiently than the CPU. This data is all available from OpenStreetMap [http://wiki.openstreetmap.org/wiki/Vector_tiles] if you want to pursue this route of action. However, doing so is far beyond the scope of CS61B and more along the lines of CS184.




The Camera & The Quadtree

The real purpose of the quadtree is to enable multi-level, angled camera rendering (think about tilting the camera, or navigation mode in Google Maps). This idea of having a camera location, viewport, and viewing direction is a natural requirement of drawing vector geometry using OpenGL or similar APIs. However, camera tilt is a very difficult thing to get right and is far beyond the scope of Berkeley’s undergrad CS curriculum.

Without that functionality, the Quadtree could be replaced with a different application structure, the slippy map [http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames], which is an exclusively top-down map like the one you’ve built in this project. This enforces a natural quad-tree structure but with fast conversion from level, longitude, and latitude to the tile co-ordinates as they exist in some level of the quadtree. This also disables the previous option I talked about, enabling vector geometry with a camera. However, a quadtree abstracts away a lot of the projection math that is outside the scope of this class.




The Front End

The front end is poorly written and doesn’t look good. This is because I have no front-end experience or skills. Feel free to improve on it or destroy it and create your own, as we are not testing it at all.






Deploying to Heroku (optional)

Heroku [http://heroku.com/] is a service that will host your web application on AWS for free (and scale it up at a price). It’s a cool option if you want to demo your project & and whatever upgrades you have made.

If you want to host your code online, below I will give a quick guide to how to get your application on Heroku, and is extensible to other services too. I choose to use Heroku because the process is the simplest; you could also host on other services like DigitalOcean, or host on your own server, AWS or Google Cloud directly.

Create a Heroku account, and using the web interface, create a new project with some name.

Add the following plugins to your pom.xml:

         <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
            <configuration>
                <descriptorRefs>
                    <!-- This tells Maven to include all dependencies -->
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
                <archive>
                    <manifest>
                        <addClasspath>true</addClasspath>
                        <mainClass>MapServer</mainClass>
                    </manifest>
                </archive>
            </configuration>
        </plugin>
        <plugin>
            <groupId>com.heroku.sdk</groupId>
            <artifactId>heroku-maven-plugin</artifactId>
            <version>0.4.4</version>
            <configuration>
                <jdkVersion>1.8</jdkVersion>
                <!-- Use your own application name -->
                <appName>YOUR OWN APPLICATION NAME HERE</appName>
                <processTypes>
                    <!-- Tell Heroku how to launch your application -->
                    <web>java -jar ./target/proj3-1.0-jar-with-dependencies.jar</web>
                </processTypes>
                <includeTarget>false</includeTarget>
                <includes>
                    <include>target/proj3-1.0-jar-with-dependencies.jar</include>
                </includes>
            </configuration>
        </plugin>





under plugins. Replace YOUR OWN APPLICATION NAME HERE with the name of your application.

In order to avoid the extra overhead of setting up multiple different server types (web, worker) and using a separate file server, we’re going to package the entire deal into a single executable standalone jar, and tell Heroku to just run that. In order to do so, you will need to be able to find your files through the classLoader, which searches the CLASSPATH. Instead of loading up files, get your png and berkeley.osm files as resource streams:

In GraphDB, load berkeley.osm like this:

InputStream in = getClass().getClassLoader().getResourceAsStream(db_path);
sax.parse(in, maphandler);





and when reading in images you can do like this:

InputStream in = getClass().getClassLoader().getResourceAsStream(img_path);
BufferedImage im = ImageIO.read(in);





if getResourceAsStream returns null, then the resource does not exist on the classpath.

Move your img/ folder and berkeley.osm file to be on the classpath. For example, I put them in the static/ directory.

Delete your target/ folder. We will have maven build an executable jar with the dependencies included. Go Build -> Make Project.

Open up the maven projects sidebar (view -> tool windows -> maven). You will want to run the assembly:assembly task, followed by the heroku:deploy task.

If all goes well, you should be able to navigate to your heroku app site and see your results! Don’t expect fantastic performance because you’re on a free dyno, but it’s a cool demo to show off nonetheless (or you could always run it locally for better responsiveness :P).

Note: These instructions have only been tested for me on my own Windows machine. Your mileage may vary, especially if you use a Mac.




FAQ


I wrote something to my output stream but it doesn’t show up!

In order for something to show up on test.html, you need to set query_success to true, and in order for something to show up on map.html all the parameters must be set.




My initial map doesn’t fill up the screen!

If your monitor resolution is high & the window is fullscreen, this can happen. Refer to the reference solution to see if it is okay.




I don’t fill up the query box on some inputs because I don’t intersect enough tiles.

That’s fine, and that happens when you would need a depth higher than what we can achieve in our quadtree.




Do I construct my quadtree in one pass or do I insert into it?

Construct it recursively in one pass. Inserting into it is much slower.




What’s a quadtree intersection query?

Think about a range query on a binary search tree. Given some binary search tree on integers, I want you to return me all integers of depth 4 in between 8 and 69 - how do you do that?  Now, if you can do that, can you do that in two dimensions? Instead of integers, now we have squares that span certain ranges. There are many approaches to solving this.




How do I keep my Quadtree code simple when calculating rectangle intersections? This feels insane.

Rectangle intersection can be done with simple logic, but it takes some cleverness. See this stack overflow post [http://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other] for a simple example.




I’m getting funky behavior with moving the map around, my image isn’t large enough at initial load, after the initial load, I can’t move the map, or after the initial load, I start getting NaN as input params.

These all have to do with your returned parameters being incorrect. Make sure you’re returning the exact parameters as given in the project 2 slides or the test html files.




I sometimes pass the timing tests when I submit, but not consistently.

If you have a efficient solution: it will always pass. I have yet to fail the timing test with either my solution or any of the other staff’s solutions over a lot of attempts to check for timing volatility.

If you have a borderline-efficient solution:  it will sometimes pass. That’s just how it is, and there really isn’t any way around this if we want the autograder to run in a reasonable amount of time.




I don’t pass the route raster test, and I’m really close on the length of the array! Like, really, really close! And it looks okay!

You should actually be always really close, because not many pixels change. If it looks very close to what the expected output is, you can first check over your calculations. It’s highly likely you don’t match the specified requirements:

“If a line goes off the bounds of the BufferedImage, keep drawing and do not truncate it. Otherwise it will appear to end at the end of the image instead of continuing off of it. When computing the pixels to draw from and to (by converting from longitude and latitude), you should round down, either explicitly or by casting to int. This is an arbitrary choice. Make sure you’re using Oracle’s JDK since OpenJDK8’s drawing is different.”

If you do, you are not calculating the right pixels to draw the lines from and to correctly. Your math may be slightly off and could have loss of double precision somewhere. You may also have a bug somewhere before drawing the lines.






Common Bugs

We’ve created a list of common bugs at this link [https://docs.google.com/document/d/1rQfdunoIhJjPy6HCg2jWMfjH8trqXOu56XE6OO3GnJk/edit]. These are far from comprehensive.




Submission

You need only submit the src folder. It should retain the structure given in the skeleton. DO NOT submit or upload to git your img/ folder, or your osm or test files. Attempting to do so will eat your internet bandwidth and hang your computer, and will waste a submission.

Do not make your program have any maven dependencies other than the ones already provided. Doing so may fail the autograder.




Acknowledgements

Data made available by OSM under the Open Database License.
JavaSpark web framework and Google Gson library.





          

      

      

    

  

  
    
    
    Getting the Skeleton Files
    
    

    
 
  
  

    
      
          
            
  ~ number: 3
~ title: Hashing

<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    tex2jax: {inlineMath: [["$","$"]]}
  });
</script>
<script type="text/javascript"
   src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>






Getting the Skeleton Files

As usual, run git pull skeleton master to get the skeleton files.




Introduction

In this lightweight HW, we’ll work to better our understanding of hash tables. Given that we have a midterm Thursday, we’ve tried to keep this homework short and to the point. Make sure you’re spending your extra time going through study guides, preferably by working through problems with other students in the class!




Simple Oomage

Your goal in this part of the assignment will be to write an equals and hashCode method for the SimpleOomage class, as well as tests for the hashCode method in the TestSimpleOomage class.

To get started on this assignment, open up the class SimpleOomage and take a quick look around. A SimpleOomage has three properties: red, green, and blue, and each may have any value between 0 and 255. Try running SimpleOomage and you’ll see four random Oomages drawn to the screen.


equals

Start by running TestSimpleOomage. You’ll see that you fail the testEquals test. The problem is that two SimpleOomage objects are not considered equal, even if they have the same red, green, and blue values. This is because SimpleOomage is using the default equals method, which simply checks to see if the the ooA and ooA2 references point to the same memory location.

Writing a proper equals method is a little tricker than it might sound at first blush. According to the Java language specification [https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-], your equals method should have the following properties to be in compliance:


	Reflexive: x.equals(x) must be true for any non-null x.

	Symmetric: x.equals(y) must be the same as y.equals(x) for any non-null x and y.

	Transitive: if x.equals(y) and y.equals(z), then x.equals(z) for any non-null x, y, and z.

	Consistent: x.equals(y) must return the same result if called multiple times, so long as the object referenced by x and y do not change.

	Not-equal-to-null: x.equals(null) should be false for any non-null x.



One particularly vexing issue is that the argument passed to the equals method is of type Object, not of type SimpleOomage, so you will need to do a cast. However, doing a cast without verifying that the Object is a SimpleOomage wont’ work, because you don’t want your code to crash if someone calls .equals with an argument that is not a SimpleOomage. Thus, we’ll need to use a new method of the Object class called getClass. For an example of a correct implementation of equals, see http://algs4.cs.princeton.edu/12oop/Date.java.html.

Override the equals method so that it works properly. Make sure to test your equals method by running the test again. Your code should now pass the test.




A Simple hashCode

In Java, it is critically important that if you override equals that you also override hashCode. Uncomment the testHashCodeAndEqualsConsistency method in TestSimpleOomage. Run it, and you’ll see that it fails.

To see why this failure occurs, consider the code show below.

Two question to ponder when reading this code:


	What should each print statement output?



	What will each print statement output?

 public void testHashCodeAndEqualsConsistency() {
     SimpleOomage ooA = new SimpleOomage(5, 10, 20);
     SimpleOomage ooA2 = new SimpleOomage(5, 10, 20);

     System.out.println(ooa.equals(ooA2));

     HashSet<SimpleOomage> hashSet = new HashSet<SimpleOomage>();
     hashSet.add(ooA);
     System.out.println(hashSet.contains(ooA2));
 }









Answers:


	The first print statement should and will output true, according to the definition of equals that we created in the previous part of the assignment.

	The final print statement should output true. The HashSet does contain a SimpleOomage with r/g/b values of 5/10/20!

	The final print statement will  print false. When the HashSet checks to see if ooA2 is there, it will first compute ooA2.hashCode, which for our code will be the default hashCode(), which is just the memory address. Since ooA and ooA2 have different addresses, their hashCodes will be different, and thus the Set will be unable to find an Oomage with r/g/b value of 5/10/20 in that bucket.



The Java specification for equals mentions this danger as well: “Note that it is generally necessary to override the hashCodemethod whenever the equals method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.”

Uncomment the given hashCode method in SimpleOomage, which will return a hashCode equal to red + green + blue. Note that this hashCode is now consistent with equals, so you should now pass all of the TestSimpleOomage tests.




testHashCodePerfect

While the given hashCode method is ok, in the sense that it is consistent with equals and thus will pass testHashCodeAndEqualsConsistency, it is only using a tiny fraction of the possible space of hash codes, meaning it will have many unnecessary collisions.

Our final goal for the SimpleOomage class will be to write a perfect hashCode function. By perfect, we mean that two SimpleOomages may only have the same hashCode only if they have the exact same red, green, and blue values.

... but before we write it, fill in the testHashCodePerfect of TestSimpleOomage with code that tests to see if the hashCode function is perfect. Hint: Try out every possible combination of red, green, and blue values and ensure that you never see the same value more than once.

Run this test and it should fail, since the provided hashCode method is not perfect.




A Perfect hashCode

To make the hashCode perfect, in the else statement of hashCode, replace return 0 with a new hash code calculation that is perfect, and set the USE_PERFECT_HASH variable to true. Finally, run TestSimpleOomage and verify that your perfect hashCode method passes your test. Your TestSimpleOomage test might take a few seconds to complete execution.




HashTable Visualizer

To get a better understanding of how hash tables work, we will now build a hash table visualizer. All you need to do is fill in the visualize method of HashTableVisualizer. To help you out, we’ve provided a class called HashTableDrawingUtility with the following API:

public class HashTableDrawingUtility {
    public static void setScale(double sf)
    public static void drawLabels(int M) 
    public static double yCoord(int bucketNum, int M)
    public static double xCoord(int bucketPos)        
}





Where the methods work as follows:

setScale(sf):         Sets the scaling factor for the drawing. Set 
                      to numbers less than 1 to fit more stuff on the
                      screen. 
drawLabels(M):        Draws numerical labels for each bucket, where M
                      is the number of buckets.
yCoord(bucketNum, M): Returns the StdDraw Y coordinate of an item in
                      the given bucket number.
xCoord(bucketPos):    Returns the StdDraw X coodinate of an item at 
                      the given position in a bucket.





For example, if we have a SimpleOomage called someOomage, and it is in position number 3 of bucket number 9 out of 16 buckets, then xCoord(3) would give us the desired x coordinate and yCoord(9, 16) would give us the desired y coordinate. Thus, we’d call someOomage.draw(xCoord(3), yCoord(9, 16), scale) to visualize the SimpleOomage as it appears in the hash table with the scaling factor scale.

One potential ambiguity is how to map hash codes to bucket numbers. While there are many ways to do this, we’ll use the technique from the optional textbook, where we calculate (hashCode & 0x7FFFFFFF) % M. You should not use Math.abs(hashCode) % M. See the FAQ for why.

In case you’re curious, & 0x7FFFFFFF throws away the top bit of a number. We’ll discuss this briefly in a later lecture in 61B.

Use these methods to fill in visualize(Set<Oomage> set, int M). When you’re done, your visualization should look something like the following:

[image: visualizer]


Experiment With the Visualizer (Optional)

Try increasing N and M and see how the visualizer behaves. If there isn’t enough room to fit everything on screen, try resetting the scaling factor to a number less than one. Compare the distribution of items for the perfect vs. imperfect vs. default hashCodes. Does what you see match what you expect?








Complex Oomage

The ComplexOomage class is a more sophisticated beast. Instead of three instance variables representing red, green, and blue values, each ComplexOomage has an entire a list of ints between 0 and 255. This list may be of any length.

This time, you won’t change the ComplexOomage class at all. Instead, your job will be to write tests to find the flaw in the hashCode function.


Visualize

The provided hashCode is valid, but it does a potentially bad job of distributing items in a hash table.

Start by visualizing the spread of random ComplexOomage objects using the visualizer you just built. Use the randomComplexOomage method to generate random ComplexOomages. You should find that this visual test shows no apparent problem in the distribution.




haveNiceHashCodeSpread

Since a visual inspection of random ComplexOomage objects did not show the flaw, we’ll need to do a more intensive inspection. Follow the directions in the starter file to fill in the helper method haveNiceHashCodeSpread.

Then run TestComplexOomage. The code should pass, since the testRandomItemsHashCodeSpread method that uses haveNiceHashCodeSpread is not smart enough to expose the flaw.

Note that haveNiceHashCodeSpread only really makes sense for large N (e.g. the test will trivially fail if N = 1, as 1 > 1 / 2.5).




testWithDeadlyParams and binary representations

Now finally we’ll unveil the flaw. By carefully inspecting the given hashCode function, devise a test testWithDeadlyParams that this hashCode function fails due to poor distribution of ComplexOomage objects.

Given what we’ve learned in 61B so far, this is a really tricky problem! Consider how Java represents integers in binary (see lecture 23 [https://docs.google.com/presentation/d/1H7253NmqEyb4rvwEQ6FQL_10tXNmAf6qBh8YTqNIvM4/edit#slide=id.g11e6c89e47_1_65] for a review). For a hint, see Hint.java.

Your test should not fail due to an IllegalArgumentException.

Once you’ve written this test and ComplexOomage fails it, you’re done with HW3!




Fix the hashCode (optional)

Consider how you might change the hashCode method of ComplexOomage so that testWithDeadlyParams passes. Are there other deadly parameters that might strike your hashCode method?






Submission

Submit a zip file containing just the folder for your hw3 package (similar to hw2).

To give you some small amount of flexibility in the problems you want to focus on, we’ve set up the AG to give you full credit so long as you pass all but one test. Thus if you’re having trouble with any particular part of the HW, feel free to skip it at no penalty.




FAQ


My perfect hashCode test is running out of memory.

Try increasing the amount of memory java is allowed to use. If you’re running from the command line, you can do this with:

java -Xmx2048m hw3.hash.TestSimpleOomage





This tells Java it may use up to 2,048 megabytes of memory. If you don’t have this much, try using 1024m instead. It is possible your computer does not have enough memory to complete the perfect hash code test. In this case, don’t worry, our grader machine is similarly constrained and thus we won’t be testing your test!




I’m failing the HashTableVisualizer test!

You must convert from hashCode to bucket number using (hashCode & 0x7FFFFFFF) % M. You should not use Math.abs(hashCode) % M.




Why can’t I just use Math.abs?

The only real reason is what happens when you do Math.abs(-2147483648). Try it out.




I’m getting errors like file does not contain class hw3.hash.HashTableVisualizer in the autograder.

Your code must be part of the hw3.hash package, with the appropriate declaration at the top of the file.







          

      

      

    

  

  
    
    
    Pre-lab
    
    

    
 
  
  

    
      
          
            
  ~ number: 3
~ title: Unit Testing with JUnit, Debugging

Due to the late release, attendance for this lab is not required. Please report any errors directly to Josh: hug@cs.berkeley.edu


Pre-lab


	Lab 3B: Installing JUnit [http://cs61b.ug/sp16/materials/lab/lab3b/lab3b.html]: Classpath setup.

	After pulling skeleton, copy your IntList.java from lab2 into the lab3/IntList folder.






Introduction

In this lab, you will learn about Unit Testing, JUnit, the 61B style checker, and we’ll also get a bit more debugging experience.

####What is JUnit?
JUnit [http://junit.org/] is a Unit Testing Framework for Java.

####What is Unit Testing?
Unit Testing is a great way to rigorously test each method of your code and ultimately ensure that you have a working project.
The “Unit” part of Unit Testing comes from the idea that you can break your program down into units, or the smallest testable part of an application.
Therefore, Unit Testing enforces good code structure (each method should only do “One Thing”), and allows you to consider all of the edge cases for each method and test for them individually.  In this class, you will be using JUnit to create and run tests on your code to ensure its correctness.  And when JUnit tests fail, you will have an excellent starting point for debugging.

####JUnit Syntax
JUnit provides some special functionality on top of what you can normally do in java.

Ultimately, JUnit provides a testing framework, so you can test your code without stressing about details (formatting and printing of error messages, counting failures and succsses, etc.).

So what is different about a JUnit java file?  Go ahead and navigate to the Arithmetic directory and open ArithmeticTest.java in your favorite text editor (don’t open IntelliJ just yet).

The first thing you’ll notice are the imports at the top.  These imports are what give you easy access to the JUnit methods and functionality that you’ll need to run JUnit tests.

Next, you’ll see that there are two methods in ArithmeticTest.java: testProduct and testSum
These methods follow this format:

@Test
public void testMethod() {
    assertEquals(<expected>, <actual>);
}





assertEquals is a common method used in JUnit tests. It tests whether a variable’s actual value is equivalent to its expected value.

When you create JUnit test files, you should precede each test method with a @Test annotation, and can have one or more assertEquals or assertTrue methods (provided by the JUnit library). ** All tests must be non-static. ** This may seem weird since your tests don’t use instance variables and you probably won’t instantiate the class. However, this is how the designers of JUnit decided tests should be written, so we’ll go with it.

From here, you have two choices of how to proceed. If you’re planning on working in IntelliJ, read on. If you’re planning on running your code from a terminal, skip to this section.




Running JUnit Tests in IntelliJ (or another IDE)

Open up IntelliJ. You’ll need to reimport your project before the Run/Debug buttons will appear for
lab 3 code. Repeat the steps from lab 2b [http://cs61b.ug/sp16/materials/lab/lab2b/lab2b.html] and
you should be good to go.

Open up lab3/arithmetic/ArithmeticTest.java in IntelliJ, and right click (a.k.a. two finger click on
Macs) and under the run menu you should see two options, as shown below:

[image: Run Options]

We recommend the option that simply says “ArithmeticTest” instead of the one that says
“ArithmeticTest....main”. Effectively the option is between whether you want “ArithmeticTest....main” or IntelliJ to be in charge of displaying the test results.

If you pick “ArithmeticTest” (without main) and run the tests, you should see something like:

java.lang.AssertionErrror:
Expected :11
Actual :30
 <Click to see the difference>

    at org.junit.Assert.failNotEquals(Assert.java.834)
    at ArithmeticTest.testSum(AritmeticTest.java:25)





This is saying that the test on line 25 of ArithmeticTest.java failed. You’ll see that even though testSum included many assert statements, you only saw the first failure (even though all of the later asserts would have failed as well!)

This is because JUnit tests are short-circuiting – as soon as one of the asserts in a method fails, it will output the failure and move on to the next test.

Try clicking on the ArithmeticTest.java:25 and IntelliJ will take you straight to the failed test.

Now fix the bug, either by inspecting Arithmetic.java and finding the bug, or using the IntelliJ
debugger to step through the code until you reach the bug.

After fixing the bug, rerun the test, and you should get a nice glorious green bar. Enjoy the rush.




[bookmark: running-junit-tests-from-a-terminal] Running JUnit Tests from a Terminal

Whether you’re on your own computer or a lab machine, you will need to complete lab 3b before JUnit test compilation will work.

Rather than write your own main method that manually invokes every test (e.g. testSum and testProduct), we’ll use the trick from Lecture 7 where our main method simply calls a runTests method that is able to automatically identify and execute all test methods annotated with the "@Test symbol.

In 61B, all JUnit tests files should have a main method that calls jh61b.junit.TestRunner.runTests, with an argument equal to the name of the class. For example, if your JUnit test file is called ArithmeticTest.java, your main should simply be:

jh61b.junit.TestRunner.runTests(ArithmeticTest.class);





This line is invoking the runTests(Class c)method of a class called TestRunner in a library called jh61b.junit.

You don’t need to know how this mysterious TestRunner class works (but see the lecture 7 lectureCode [https://github.com/Berkeley-CS61B/lectureCode-sp16/tree/master/lec7/extra] if you’re curious). Just know that this function will run all of the methods which are preceded by @Test in the specified file, and will output everything in a nice format.

Let’s try it out. Go to the lab3/arithmetic folder, and try running the small test provided:

javac *.java
java ArithmeticTest





This will run all of the tests in ArithmeticTest.java and give you back a JUnit report. Notice it includes a failure! This tells you which test failed (testSum in ArithmeticTest), what the expected and actual values were, and on what line the failure occured. The output on your console should be something like this:

Running JUnit tests using jh61b.junit.TestRunner in "all" mode.

Running testSum:
====================================
expected:<11> but was:<30>
    at ArithmeticTest.testSum:25 (ArithmeticTest.java)
=====> FAILED!

Running testProduct:
====================================
=====> Passed

Passed: 1/2 tests.





As you can see above the testProduct test passed with flying colors. However, the testSum class failed miserably, apparently calculating 30 when it should have computed 11.

Open up ArithmeticTest.java and take a look around. Comparing against the output above, you’ll see that even though testSum included many assert statements, you only saw the first failure (even though all of the later asserts would have failed as well!)

This is because JUnit tests are short-circuiting – as soon as one of the asserts in a method fails, it will output the failure and move on to the next test.

Try modifying ArithmeticTest so that it shows only failed test results (by changing the mode argument from “all” to “failed”). Re-run and you’ll see only failed tests. We recommend that you run your test files in “failed” mode, as this will allow you to focus on what needs doing, rather than celebrating what has already been done. Debugging is a hard life.

Now it’s time to look to see why testSum failed. Look at testSum to understand what its testing for, and then make the appropriate change in Arithmetic.java.

After fixing the bug, execute the compilation and execution commands again:

$ javac *.java
$ java ArithmeticTest





If you’ve fixed the bug, it should look like this:

$ java ArithmeticTest

Running JUnit tests using jh61b.junit.TestRunner in "failure" mode.

Passed: 2/2 tests.





Since you’re running your code from the command line, you’re going to need to use print statement debugging (as opposed to the cool debugger you hopefully saw in lab 2). Any code that is printed during a test will be output as part of the results message for a given test. Try adding print statements and see how the output changes.

Extra for Experts: If you’re interested in learning to use a command line debugger for Java, you can try out Paul Hilfinger’s gjdb tool. See this video from Spring 2015 [https://www.youtube.com/watch?v=ihMUS-MhNwA] for a demo of this tool. Due to very low adoption rates in previous semesters, we will not provide official support for this tool, but lab1d and lab3 from Spring 2015 explain how to use it. The directions from Spring 2015 should still work (but let Josh know if they don’t).




Intlists

Now a real-CS61B application of JUnit tests: IntLists.

As with last week’s lab, we’re going to take advantage of the list method of the IntList class, which makes creating IntLists (and writing IntList tests) much easier. For example, consider:

IntList myList = IntList.list(0, 1, 2, 3);





Which will create the IntList 0 -> 1 -> 2 -> 3 -> null

###Test a Reverse Method

Copy your IntList.java that you created for lab2 into the lab3/IntList folder. In this section, our goal will be to write the reverse method from this week’s discussion worksheet.

We’ll showcase the idea of “test-driven development” for this exercise, where we write a unit test even before we write the new method.

Add a new test to IntListTest.java that tests the .reverse() method, which you can assume has the following definition:

/**
 * Returns the reverse of the given IntList.
 * This method is destructive. If given null
 * as an input, returns null.
 */
public static IntList reverse(IntList A)





Your test should test at least the following:


	That the method handles null lists properly.

	That the function returns a reversed list.

	That the function is destructive. (This is a bit of a silly test, but I have a good reason!)



###Writing a Reverse Method

When you feel like your test is probably in good shape, try compiling IntListTest.java. You should get a compiler error along the lines of:

IntListTest.java:72: error: cannot find symbol

  symbol:   method reverse





This error is a great thing! It means that the compiler is actually finding our test.

Now copy and paste a dummy version of the reverse method into IntList.java. Your dummy version might simply return null. Your only goal here is to get IntList.java to compile.

If you’re running IntListTest from the command line, you’ll need to add a main method before proceeding. See ArithmeticTest.java for an example.

Try compiling IntListTest.java again, and this time your test should compile. Run the test using java IntListTest or IntelliJ, and the test should fail. This is great! We’ve now reached the “red” phase of the TDD cycle.

Write a reverse method, and rerun the tests until it passes. If you’re stuck (this is a tricky problem with a very clever solution), see the week 3 discussion solutions. Note that a correct reverse is not required for full credit on this week’s lab (it’s an ungraded test in the AG), so if you’re really stuck and need to work on project 1, do that first, and then come back and complete this exercise.

Protip: If you want to have your tests timeout after a certain amount of time (to prevent infinite loops), you can declare your test like this:

@Test(timeout = 1000)





The given parameter specifies the maximum time in milliseconds.

Some people find the rush of TDD addictive. You basically set up a little game for yourself to solve. Some people hate it. Your mileage may vary. Whether you personally enjoy the TDD flow or not, writing tests will be one of the most important skills you learn here at Berkeley, and getting “test-infected [http://c2.com/cgi/wiki?TestInfected]” will save you and your future colleagues an enormous amount of time and misery.




A Debugging Mystery

Another important skill to learn is how to exhaustively debug. When done properly, debugging should allow you to rapidly narrow down where a bug might be located, even when you are debugging code you don’t fully understand.

Your company, Flik Enterprises, has released a fine software library called Flik.java that is able to determine whether two Integers are the same or not.

You receive an email from someone named “Horrible Steve” who describes a problem they’re having with your library:

"Dear Flik Enterprises,

Your library is very bad. See the attached code. It should print out 500 but actually it's printing out 128.

(attachment: HorribleSteve.java)"





Using any combination of the following techniques, figure out whether the bug is in Horrible Steve’s code or in Flik enterprise’s library:


	Writing JUnit tests for the Flik library.

	Using the IntelliJ debugger.

	Using print statements.

	Refactoring Horrible Steve’s code. Refactoring means changing the syntax without changing the functionality. This may be hard to do since HS’s code uses lots of weird stuff.



HorribleSteve.java and Flik.java both use syntax we haven’t covered in class. We do not expect you to fix the bug or even understand it once you have found it. Instead, your job is simply to find the bug.

Tip: JUnit provides methods assertTrue(boolean) and assertTrue(String, boolean) that you might find helpful.




Running the 61B Style Checker

Starting after the midterm, your code will be required to obey the CS61B style guidelines [http://cs61b.ug/sp16/materials/guides/style-guide.html]. As noted, you should probably not try to read these rules, though they may be a useful reference. Instead, it will be much easier to simply run the style checker. You can do this by running the style61b.py script provided in the lib folder (you may need to pull from skeleton again if you don’t see it). For example, on my machine, I can run it as follows.

$ python3 /Users/jug/work/bqd/javalib/style61b.py *.java





Try it out on the files in your IntList folder. You should see that there are at least two style errors (the two we put in, plus whatever you may have introduced yourself). You are not required to pass these checks until after the midterm (though from now on, we will be running the style checker for your reference in the autograder, for no credit).

When you pass the style check, the output should look like:

Starting audit...
Audit done.








Deque Unit Tests

In project 1B (to be released 2/5), you’ll be required to write JUnit tests for your Deque classes. If you have extra time in lab, start writing some tests for LinkedListDeque and ArrayDeque as a warmup.




[bookmark: Submission] Submission

Submit your Arithmetic.java, IntListTest.java, and IntList.java method to gradescope.




Recap

In this lab, we went over:


	Unit Testing (big picture)

	JUnit syntax and details

	Writing JUnit tests

	Debugging Using JUnit

	Running the Style checker







          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 12
~ title: Merge and Quick Sort


Introduction

In this week’s lab, you’ll implement two of the sorting algorithms that we learned about in lecture this week.  In lecture, we focused on sorting arrays.  In this lab, you’ll instead focus on sorting linked lists, which requires some cleverness and a good understanding of how merge sort and quick sort operate.

All of the functions that you write will operate on the Princeton Queue Implementation [http://algs4.cs.princeton.edu/43mst/Queue.java.html], which many of you used in last week’s lab and which implements a queue using a linked list.  You should implement sorting using the public methods in the Queue class.




Merge Sort


Test driven development

In this week’s lab, you’ll practice test-driven-development by writing a test before writing any code.  With test-driven-development, you start by writing a test that fails (because you haven’t written any code yet!).  After writing the relevant code, you re-run the test to make sure that it passes.

Today, you’ll write a lightweight test by writing a main method in MergeSort.  Your main method should create a Queue of unsorted objects and print that queue.  Next, call MergeSort.mergeSort() on that queue, and print both the original queue (which should be unchanged) and the returned, sorted queue.

You can put any kind of object you like in your test queue, as long as the object implements the Comparable interface.  It may work well to create a Queue of Strings, as in the code below:

Queue<String> students = new Queue<String>();
students.enqueue("Alice");
students.enqueue("Vanessa");
students.enqueue("Ethan");





Try running your main method.  Is the output what you expect, based on the implementation we provided of mergeSort()?




Sorting

If you need to review how mergesort works, you may find the Merge sort demo from lecture [https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/edit#slide=id.g463de7561_042] or this Merge sort demo [https://www.youtube.com/watch?v=XaqR3G_NVoo] to be useful.

To help you implement merge sort, start by implementing two helper methods:


	Implement makeSingleItemQueues. This method takes in a Queue called items, and should return a Queue of Queues that each contain one item from items.  For example, if you called makeSingleItemQueues on the Queue "(Alice" -> "Vanessa" -> "Ethan"), it should return (("Alice") -> ("Vanessa") -> ("Ethan")).

	Implement mergeSortedQueues. This method takes two sorted queues q1 and q2 as parameters, and returns a new queue that has all of the items in q1 and q2 in sorted order.  For example, mergeSortedQueues(("Alice" -> "Vanessa"), ("Ethan")) should return ("Alice" -> "Ethan" -> "Vanessa").  The provided getMin heper method may be helpful in implementing mergeSortedQueues.  Your implementation should take time linear in the total number of items in q1 and q2 (it should be Θ

(q1.size() + q2.size()).



Once you’ve finished implementing these helper methods, use them to implement mergeSort.  With the help of the two methods above, your mergeSort method should be short (fewer than 15 lines of code).  Run the main method you wrote above to test whether your mergeSort implementation works!






Quick Sort


Test driven development

As you did for merge sort, begin by writing a main method in QuickSort.java that creates an unsorted Queue, prints it, sorts it, and then prints the result.




Sorting

If you need to review how quick sort works, take a look at slides 6 through 10 from lecture [https://docs.google.com/presentation/d/16f32G93I13gWj0yYk0qh-2ypBpb_ufkBfuuiofkxjrk/edit#slide=id.g4661758db_113].  You’ll be using the 3-way merge partitioning process described on slide 10. This partitioning approach, unfortunately, has no Hungarian dance demo (the dancers chose to partition based on the first item in the array, rather than on a random element. [https://www.youtube.com/watch?v=ywWBy6J5gz8]).

Begin by implementing the helper function partition().  The partition() method takes an unsorted queue called unsorted and an item to pivot on, and three empty queues called less, equal, and greater.  When it returns, less should contain all items from unsorted that were less than the pivot, equal should contain all items from unsorted that were equal to the pivot, and greater should contain all items that were greater than the pivot.

Once you’ve implemented partition(), use it to implement the quickSort function.  You may fund the getRandomItem() and catenate() methods that we’ve provided to be useful.  Using these helper functions, your quickSort method should be short (fewer than 15 lines of code).






FAQ


What does the <Item extends Comparable> syntax mean?

In this week’s lab, many of the functions have syntax that looks something like:

public static <Item extends Comparable> Queue<Item> mergeSort(
        Queue<Item> items) {
    ...
}





Recall from lecture 13 [https://docs.google.com/presentation/d/1RfguNPWCGdRKnbH8t74nnhfRWR4Pcj4FyHsLLFrWc4Y] that if a method operates on generic types, the generic type should be defined before the return type of the method.  In the example above, the part of the function declaration that says <Item extends Comparable> means that the mergeSort function operates on generic type Item, which must extend Comparable (we need Item to extend Comparable so that we can use the compareTo method to compare items).  In other words, you can interpret the declaration above as saying “the mergeSort function takes a Queue of things that implement the Comparable interface, and returns a Queue of those things in sorted order.”  If you’re unsure how to write code in functions like this, take a look at the helper functions that we provided, which may be helpful examples.




My code works fine but the autograder fails with some sort of JSON error.

The issue is probably that your code is quadratic time instead of linearithmic. Your code should be able to easily handle collections of 10,000 items, even if there are lots of duplicates and/or the collection is in sorted order already.







          

      

      

    

  

  
    
    
    1: BSTMap
    
    

    
 
  
  

    
      
          
            
  ~ number: 8
~ title: BSTs and Asymptotics

In this lab, you’ll create BSTMap, a BST-based implementation of the Map61B interface, which represents a basic map.

After you’ve completed your implementation, you’ll compare the performance of your implementation to a list-based Map implementation ULLMap as well as the built-in Java TreeMap class (which also uses a BST).


1: BSTMap

Create a class BSTMap that implements the Map61B interface using a BST (Binary Search Tree) as its core data structure. You must do this in a file named BSTMap.java. Your implementation is required to implement all of the methods given in Map61B except for remove, iterator and keyset. For these methods you should throw an UnsupportedOperationException.

In your implementation you should assume that generic keys K in BSTMap<K,V> extend Comparable
  
    
    
    Getting the Skeleton Files
    
    

    
 
  
  

    
      
          
            
  ~ number: 5
~ title: Seam Carving

<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    tex2jax: {inlineMath: [["$","$"]]}
  });
</script>
<script type="text/javascript"
   src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>






Getting the Skeleton Files

As usual, run git pull skeleton master to get the skeleton files. If you’re using IntelliJ, you might need to manually add the SeamRemover.jar file to your project. If you’re working from the command line, you’ll need to make sure SeamRemover.jar is in your classpath. The easiest way to do this is to copy it into your course-materials-sp16/javalib/ folder.




Introduction

Seam-carving is a content-aware image resizing technique where the image is reduced in size by one pixel of height (or width) at a time. A vertical seam in an image is a path of pixels connected from the top to the bottom with one pixel in each row. (A horizontal seam is a path of pixels connected from the left to the right with one pixel in each column.) Below is the original 505-by-287 pixel image; further below we see the result after removing 150 vertical seams, resulting in a 30% narrower image. Unlike standard content-agnostic resizing techniques (e.g. cropping and scaling), the most interesting features (aspect ratio, set of objects present, etc.) of the image are preserved.


[image: Seam Carving Josh Example]
[image: Seam Carving Josh Example]


In this assignment, you will create a data type that resizes a W-by-H image using the seam-carving technique.

Finding and removing a seam involves three parts and a tiny bit of notation:


	Notation. In image processing, pixel (x, y) refers to the pixel in column x and row y, with pixel (0, 0) at the upper left corner and pixel (W − 1, H − 1) at the bottom right corner. This is consistent with the Picture data type in stdlib.jar. Warning: this is the opposite of the standard mathematical notation used in linear algebra where (i, j) refers to row i and column j and with Cartesian coordinates where (0, 0) is at the lower left corner.

 <center>
 <table>
     <caption><em>a 3-by-4 image</em></caption>
 
         <tbody><tr>
             <td align="center" bgcolor="#eeeeee">&nbsp; (0, 0) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (1, 0) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (2, 0) &nbsp;</td>
         </tr>    
         <tr>
             <td align="center" bgcolor="#eeeeee">&nbsp; (0, 1) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (1, 1) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (2, 1) &nbsp;</td>
         </tr>
         <tr>
             <td align="center" bgcolor="#eeeeee">&nbsp; (0, 2) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (1, 2) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (2, 2) &nbsp;</td>
         </tr>
         <tr>
             <td align="center" bgcolor="#eeeeee">&nbsp; (0, 3) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (1, 3) &nbsp;</td>
             <td align="center" bgcolor="#eeeeee">&nbsp; (2, 3) &nbsp;</td>
         </tr>
 </tbody>
 </table>
 </center>

 We also assume that the color of a pixel is represented in RGB space, using three integers between 0 and 255. This is consistent with the `java.awt.Color` data type.







	Energy calculation. The first step is to calculate the energy of each pixel, which is a measure of the importance of each pixel—the higher the energy, the less likely that the pixel will be included as part of a seam (as we’ll see in the next step). In this assignment, you will implement the dual gradient energy function, which is described below. Here is the dual gradient of the surfing image above:

 <center>![Seam Carving Josh Energy](images/HJoceanSmallEnergy.png)</center>

 A high-energy pixel corresponds to a pixel where there is a sudden change in color (such as the boundary between the sea and sky or the boundary between the surfer on the left and the ocean behind him). In the image above, pixels with higher energy values have whiter values. The seam-carving technique avoids removing such high-energy pixels.







	Seam identification. The next step is to find a vertical seam of minimum total energy. This is similar to the classic shortest path problem in an edge-weighted digraph except for the following:


	The weights are on the vertices instead of the edges.

	We want to find the shortest path from any of W pixels in the top row to any of the W pixels in the bottom row.

	The digraph is acyclic, where there is a downward edge from pixel (x, y) to pixels (x − 1, y + 1), (x, y + 1), and (x + 1, y + 1), assuming that the coordinates are in the prescribed range.





	Seam Removal. The final step is remove from the image all of the pixels along the seam. The logic for this method has been implemented for you in the supplementary SeamRemover class, provided in SeamRemover.jar.

 public class SeamRemover {
     // These methods are NOT destructive
     public static Picture removeHorizontalSeam(Picture picture, int[] seam)  // returns a Picture with the specified horizontal seam removed
     public static Picture removeVerticalSeam(Picture picture, int[] seam)    // returns a Picture with the specified vertical seam removed
 }












SeamCarver

The SeamCarver API. Your task is to implement the following mutable data type:

public class SeamCarver {
    public SeamCarver(Picture picture)
    public Picture picture()                       // current picture
    public     int width()                         // width of current picture
    public     int height()                        // height of current picture
    public  double energy(int x, int y)            // energy of pixel at column x and row y
    public   int[] findHorizontalSeam()            // sequence of indices for horizontal seam
    public   int[] findVerticalSeam()              // sequence of indices for vertical seam
    public    void removeHorizontalSeam(int[] seam)   // remove horizontal seam from picture
    public    void removeVerticalSeam(int[] seam)     // remove vertical seam from picture
}






energy(): Computing the Energy of a Pixel

We will use the dual gradient energy function: The energy of pixel (x, y) is $\Delta_x^2(x, y) + \Delta_y^2(x, y)$, where the square of the x-gradient $\Delta_x^2(x, y) = R_x(x, y)^2 + G_x(x, y)^2 + B_x(x, y)^2$, and where the central differences $R_x(x, y)$, $G_x(x, y)$, and $B_x(x, y)$ are the absolute value in differences of red, green, and blue components between pixel (x + 1, y) and pixel (x − 1, y). The square of the y-gradient $\Delta_y^2(x, y)$ is defined in an analogous manner. We define the energy of pixels at the border of the image to use the same pixels but to replace the non-existant pixel with the pixel from the opposite edge.

As an example, consider the 3-by-4 image with RGB values (each component is an integer between 0 and 255) as shown in the table below.

    <center>
    <table>
            <tbody>
            <tr>
                <td align="center" bgcolor="#ff6533">&nbsp; (255, 101, 51) &nbsp;</td>
                <td align="center" bgcolor="#ff6599">&nbsp; (255, 101, 153) &nbsp;</td>
                <td align="center" bgcolor="#ff65ff">&nbsp; (255, 101, 255) &nbsp;</td>
            </tr>    
            <tr>
                <td align="center" bgcolor="#ff9933">&nbsp; (255,153,51) &nbsp;</td>
                <td align="center" bgcolor="#ff9999">&nbsp; (255,153,153) &nbsp;</td>
                <td align="center" bgcolor="#ff99ff">&nbsp; (255,153,255) &nbsp;</td>
            </tr>
            <tr>
                <td align="center" bgcolor="#ffcb33">&nbsp; (255,203,51) &nbsp;</td>
                <td align="center" bgcolor="#ffcc99">&nbsp; (255,204,153) &nbsp;</td>
                <td align="center" bgcolor="#ffcdff">&nbsp; (255,205,255) &nbsp;</td>
            </tr>
            <tr>
                <td align="center" bgcolor="#ffff33">&nbsp; (255,255,51) &nbsp;</td>
                <td align="center" bgcolor="#ffff99">&nbsp; (255,255,153) &nbsp;</td>
                <td align="center" bgcolor="#ffffff">&nbsp; (255,255,255) &nbsp;</td>
            </tr>
            </tbody>
    </table>
    </center>





Example 1: We calculate the energy of pixel (1, 2) in detail:


$R_x(1, 2) = 255 − 255 = 0$,
$G_x(1, 2) = 205 − 203 = 2$,
$B_x(1, 2) = 255 − 51 = 204$,

  
    
    
    Table of Contents
    
    

    
 
  
  

    
      
          
            
  ~ number: 1
~ title: Packages, Interfaces, Generics, Exceptions, Iteration


Table of Contents


	Introduction

	Task 1: BoundedQueue

	Task 2: AbstractBoundedQueue

	Task 3: ArrayRingBuffer

	Task 4: GuitarString

	Task 5: Iteration and Exceptions






Getting the Skeleton Files

Just the usual git pull skeleton master.




Introduction

In this homework, you will learn how to write and use packages, as well as get some hands-on practice with interfaces and abstract classes. We’ll also get an opportunity to implement a simple data structure as well as an algorithm that is easy to implement given that data structure. Finally we’ll add support for iteration and exceptions  (which we’ll cover on Monday) to our data structure.

As mentioned in class, a package is a namespace that organizes a set of related classes and interfaces. Conceptually you can think of packages as being similar to different folders on your computer. When you are building a large system, it is a good idea to organize it into different packages.

For this assignment, we’ll create a synthesizer package intended for use by programs that want to simulate the sound of instruments.

The synthesizer package has four components:


	BoundedQueue, an interface which declares all the methods that must be implemented by any class that implements BoundedQueue.

	AbstractBoundedQueue, an abstract class which implements BoundedQueue, capturing the redundancies between methods in BoundedQueue.

	ArrayRingBuffer, a class which extends AbstractBoundedQueue and uses an array as the actual implementation of the BoundedQueue.

	GuitarString, which uses an ArrayRingBuffer<Double> to implement the Karplus-Strong algorithm [http://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis] to synthesize a guitar string sound.



We’ve provided you with skeleton code for ArrayRingBuffer and GuitarString, but you’ll need to implement the other two .java files from scratch. In this HW, we’ll work our way down the hierarchy from most abstract to most concrete.

Note: While it’d probably be better design to make only the GuitarString class public (since people using synthesizers don’t really care about AbstractBoundedQueues), we’ll be leaving all of our classes public for this HW for testing convenience.




Task 1: BoundedQueue


Review: What is an Interface?  Why would you want one?

As discussed in class, an interface is a formal contract between a class and the outside world.  If your class claims to implement an interface, then all methods defined by that interface must appear in your class (or somewhere in your superclass) before the class will successfully compile.
This is a way of enforcing promised behavior.
All methods that you declare or define are automatically public and abstract (even if you omit the public keyword).




Your Task

We will start by defining a BoundedQueue interface. The BoundedQueue is similar to our Deque from project 1, but with a more limited API. Specifically, items can only be enqueued at the back of the queue, and can only be dequeued from the front of the queue. Unlike our Deque, the BoundedDeque has a fixed capacity, and nothing is allowed to enqueue if the Deque is full.

Create a file BoundedQueue.java in the synthesizer folder.  Your BoundedQueue interface should contain the following public abstract methods:

int capacity();          // return size of the buffer
int fillCount();         // return number of items currently in the buffer    
void enqueue(T x);  // add item x to the end
T dequeue();        // delete and return item from the front
T peek();           // return (but do not delete) item from the front    





You should also create default methods isEmpty() and isFull() that return the appropriate answer if the BoundedQueue is empty or full.

default boolean isEmpty()       // is the buffer empty (fillCount equals zero)?
default boolean isFull()        // is the buffer full (fillCount is same as capacity)?





For example, given an empty BoundedQueue<Double> of capacity 4, the state of the queue after each operation is shown below:

isEmpty()       //                       (returns true)
enqueue(9.3)    // 9.3
enqueue(15.1)   // 9.3  15.1
enqueue(31.2)   // 9.3  15.1  31.2
isFull()        // 9.3  15.1  31.2       (returns false)
enqueue(-3.1)   // 9.3  15.1  31.2  -3.1
isFull()        // 9.3  15.1  31.2  -3.1 (returns true)
dequeue()       // 15.1 31.2  -3.1       (returns 9.3)
peek()          // 15.1 31.2  -3.1       (returns 15.1)





Of course, your BoundedQueue.java file won’t actually do anything (since it’s an interface), but it will define the contract that any BoundedQueue must follow.

Make sure to decare this interface as part of the synthesizer package.  The syntax for declaring yourself to be part of a package is package <packagename>;.  For example, if you are part of
the animal package, the top of your file should have a package animal; line. Your package name should just be synthesizer, nothing else.

Before moving on, ensure that  BoundedQueue compiles: javac BoundedQueue.java.

If you’re stuck, see the List61B interface [https://github.com/Berkeley-CS61B/lectureCode-sp16/blob/2e6e4a74530bd66952bb11f8f00edfdbeddbd9a2/lec8/hugCode/List61B.java] for an example of an interface declaration with generics.






Task 2: AbstractBoundedQueue


Review: What is an Abstract Class?  Why would you want one?

Methods and classes can be declared as abstract using the abstract keyword. Abstract classes cannot be instantiated, but they can be subclassed using the extends keyword. Unlike interfaces, abstract classes can provide implementation inheritance for features other than public methods, including instance variables.

Classes that implement interfaces will inherit all of the methods and variables from that interface. If an implementing class fails to implement any abstract methods inherited from an interface, then that class must be declared abstract, as in:

public abstract class AbstractBoundedQueue





As an aside, it is also possible to declare additional abstract methods. To do so, the method must be defined with the abstract keyword and without an implementation (without braces, and followed by a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);





We won’t explicitly define any non-inherited methods as abstract in HW4, but it’s a thing you might find useful someday (perhaps in the HugLife lab during week 6).




Your Task

Create a new abstract class in a .java file called AbstractBoundedQueue.java that implements BoundedQueue. Your AbstractBoundedQueue class should have the following methods and fields (field is just another word for variable):

protected int fillCount;
protected int capacity;
public int capacity()
public int fillCount()
public boolean isEmpty()
public boolean isFull()
public abstract T peek();
public abstract T dequeue();
public abstract void enqueue(T x);





Note that isEmpty, isFull, peek, dequeue, enqueue, are inherited from BoundedQueue, so you should not to declare these explicitly in your AbstractBoundedQueue.java file. The mysterious protected keyword above is something we’ll talk about in lecture on 2/26. It just means that only subclasses of AbstractBoundedQueue can access this variable.

The purpose of AbstractBoundedQueue will be to simply provide a protected fillCount and capacity variable that all subclasses will inherit, as well as so called “getter” methods capacity() and fillCount() that return capacity and fillCount, respectively. This saves a tiny amount of work for future implementations like ArrayRingBuffer.java (see next section).

If you’re having trouble compiling your AbstractBoundedQueue.java file from the command line, because the compiler can’t find BoundedQueue.class, try compiling with:

javac BoundedQueue.java AbstractBoundedQueue.java





or if you want to compile ALL java files in a folder, you can just do:

javac *.java





This is a minor quirk in the way the javac compiler behaves when compiling from inside package directories.




Side note: When to Use a Interface versus Abstract Class

In practice, in can be a little unclear when to use an interface and when to use an abstract class.  One mostly accurate metaphor that might help is that you can think of an interface as defining a “can-do” or an “is-a” relationship, whereas an abstract class should be a stricter “is-a” relationship.  The difference can be subtle, and you can often use one instead of the other.

In practice, large Java libraries often have a hierarchy of interfaces, which are extended by abstract classes that provided default implementations for some methods, and which are in turn ultimately implemented by concrete classes.  A good example is the Collection interface:  It extends Iterable (which is its superinterface), and is implemented by many subinterfaces (i.e. List, Set, Map), which in turn have their own abstract implementations (AbstractList, AbstractSet AbstractMap).  However, for smaller programs, the hierarchy is often stubbier, sometimes starting with an abstract class. For example, we could have just started with AbstractBoundedQueue at the top of the hierarchy and skipped having a BoundedQueue interface altogether.






Task 3: ArrayRingBuffer

The ArrayRingBuffer class will do all the real work by extending AbstractBoundedQueue. That means we can happily inherit capacity(), fillCount(), isEmpty(), and isFull() without having to override these, but we’ll need to override all of the the abstract methods. In this part, you’ll fill out ArrayRingBuffer.java. You’ll need to rename the file from ArrayRingBuffer.java.skeleton to ArrayRingBuffer.java.

A naive array implementation of a BoundedQueue would store the newest item at position 0, the second newest item in position 1, and so forth. This is an inefficient approach, as we see in the example below, where the comments show entries 0, 1, 2, and 3 of the array respectively. We assume that the array is initially all nulls.

BoundedQueue x = new NaiveArrayBoundedQueue(4);
x.enqueue(33.1) // 33.1 null null  null
x.enqueue(44.8) // 33.1 44.8 null  null
x.enqueue(62.3) // 33.1 44.8 62.3  null
x.enqueue(-3.4) // 33.1 44.8 62.3 -3.4
x.dequeue()     // 44.8 62.3 -3.4  null (returns 33.1)





Note that in this setup, the call to dequeue is very slow as it requires moving every single item to the left. For larger arrays this would result in unacceptable performance.

The ArrayRingBuffer will improve this runtime substantially by using the ‘ring buffer’ data structure, similar to the circular array from project 1a. A ring buffer first starts empty and of some predefined length. For example, this is a 7-element buffer:

[image: empty buffer]

Assume that a 1 is written into the middle of the buffer (exact starting location does not matter in a ring buffer):

[image: one item]

Then assume that two more elements are added — 2 & 3 — which get appended after the 1. Here, it is important that the 2 and 3 are placed in the exact order and places shown:

[image: three items]

If two elements are then removed from the buffer, the oldest two values inside the buffer are removed. The two elements removed, in this case, are 1 & 2, leaving the buffer with just a 3:

[image: one item again]

If we then enqueue 4, 5, 6, 7, 8, 9, the ring buffer is now as shown below:

[image: full]

Note that the 6 was enqueued at the leftmost entry of the array (i.e. the buffer wraps around, like a ring). At this point, the ring buffer is full, and if another enqueue() is performed, then an Exception will occur. You will manually throw this Exception. See the section labeled Iteration and Exceptions at the end of this HW for more.

We recommend you maintain one integer instance variable first that stores the index of the least recently inserted item; maintain a second integer instance variable last that stores the index one beyond the most recently inserted item. To insert an item, put it at index last and increment last. To remove an item, take it from index first and increment first. When either index equals capacity, make it wrap-around by changing the index to 0. Our skeleton file provides starter code along these lines. You’re welcome to do something else if you’d like, since these variables are private and thus our tester will not be able to see them anyway.

In the last section of this homework, we’ll implement our ArrayRingBuffer to throw a run-time exception if the client attempts to enqueue() into a full buffer or call dequeue() or peek() on an empty buffer. We’ll be covering exceptions on Monday, so hold off until then (or read ahead in HFJ or online).

Once you’ve fleshed out the TODOs, make sure ArrayRingBuffer compiles before moving on. Optionally, you can add tests to the TestArrayRingBuffer class (either before or after your write ArrayRingBuffer). TestArrayRingBuffer.java will not be graded. To run TestArrayRingBuffer you’ll need to run the following command from your hw1 folder as described in this common package gotchas slide [https://docs.google.com/presentation/d/1CKlh3Yh_NYn-5NMkqES1qfAeTkPe9t8bS3UOqqh6qAY/edit#slide=id.g7a41441c3_1155].

java synthesizer.TestArrayRingBuffer





For homeworks and labs (but not projects), you’re welcome to share test code. Feel free to share your tests for this HW on Piazza.




Task 4: GuitarString

Finally, we want to flesh out GuitarString, which uses an ArrayRingBuffer to replicate the sound of a plucked string. We’ll be using the Karplus-Strong algorithm, which is quite easy to implement with a BoundedQueue.

The Karplus-Algorithm is simply the following three steps:


	Replace every item in a BoundedQueue with random noise (double values between -0.5 and 0.5).

	Remove the front double in the BoundedQueue and average it with the next double in the BQ (hint: use dequeue() and peek()) multiplied by an energy decay factor of 0.996.

	Play the double that you dequeued in step 2. Go back to step 2 (repeating forever).



Or visually, if the BoundedQueue is as shown on the top, we’d dequeue the 0.2, combine it with the 0.4 to form 0.2988, enqueue the 0.2988, and play the 0.2.

[image: karplus-strong]

You can play a double value with the StdAudio.play() method. For example StdAudio.play(0.333) will tell the diaphragm of your speaker to extend itself to 1/3rd of its total reach, StdAudio.play(-0.9) will tell it to stretch its little heart backwards almost as far as it can reach. Movement of the speaker diaphragm displaces air, and if you displace air in nice patterns, these disruptions will be intepreted by your consciousness as pleasing thanks to billions of years of evolution. See this page [http://electronics.howstuffworks.com/speaker6.htm] for more. If you simply do StdAudio.play(0.9) and never play anything again, the diaphragm shown in the image would just be sitting still 9/10ths of the way forwards.

Rename GuitarString.java.skeleton to GuitarString.java. Complete ‘GuitarString.java’ so that it implements steps 1 and 2 of the Karplus-Strong algorithm. Step 3 will be done by the client of the GuitarString class.

For example, the provided TestGuitarString class provides a sample test testPluckTheAString that attempts to play an A-note on a guitar string. You should hear an A-note when you run this test. If you don’t, you should try the testTic method and debug from there. Consider adding a print or toString method to GuitarString.java that will help you see what’s going on between tics.

Once you’re relatively comfortable that GuitarString should be working, try compiling and running ‘GuitarHeroLite’. It will provide an interface, allowing the user to interactively play sounds using the synthesizer package’s GuitarString class.

When you run GuitarHeroLite, it will open a Standard Draw window. Click on the window, and press “a” or “c”.  These should play two different guitar string sounds for you. This is just the sound of a double dequeuing repeatedly. It is like magic.




Just For Fun: Building a 37 Key Synthesizer

Write a program GuitarHero that is similar to GuitarHeroLite, but supports a total of 37 notes on the chromatic scale from 110Hz to 880Hz. Use the following 37 keys to represent the keyboard, from lowest note to highest note:

String keyboard = "q2we4r5ty7u8i9op-[=zxdcfvgbnjmk,.;/' ";





This keyboard arrangement imitates a piano keyboard: The “white keys” are on the qwerty and zxcv rows and the “black keys” on the 12345 and asdf rows of the keyboard.

The ith character of the string keyboard corresponds to a frequency of 440 × 2^((i - 24) / 12), so that the character ‘q’ is 110Hz, ‘i’ is 220Hz, ‘v’ is 440Hz, and ‘ ‘ is 880Hz. Don’t even think of including 37 individual GuitarString variables or a 37-way if statement! Instead, create an array of 37 GuitarString objects and use keyboard.indexOf(key) to figure out which key was typed. Make sure your program does not crash if a key is pressed that does not correspond to one of your 37 notes.

This part of the assignment is not graded.




Even More Fun


	Harp strings: Flipping the sign of the new value before enqueueing it in tic() will change the sound from guitar-like to harp-like. You may want to play with the decay factors to improve the realism, and adjust the buffer sizes by a factor of two since the natural resonance frequency is cut in half by the tic() change.

	Drums: Flipping the sign of a new value with probability 0.5 before enqueueing it in tic() will produce a drum sound. A decay factor of 1.0 (no decay) will yield a better sound, and you will need to adjust the set of frequencies used.

	Guitars play each note on one of 6 physical strings. To simulate this you can divide your GuitarString instances into 6 groups, and when a string is plucked, zero out all other strings in that group.

	Pianos come with a damper pedal which can be used to make the strings stationary. You can implement this by, on iterations where a certain key (such as Shift) is held down, changing the decay factor.

	While we have used equal temperament, the ear finds it more pleasing when musical intervals follow the small fractions in the just intonation system. For example, when a musician uses a brass instrument to play a perfect fifth harmonically, the ratio of frequencies is 3/2 = 1.5 rather than 27/12 ∼ 1.498. Write a program where each successive pair of notes has just intonation.



This part of the assignment is not graded.




Why It Works

The two primary components that make the Karplus-Strong algorithm work are the ring buffer feedback mechanism and the averaging operation.


	The ring buffer feedback mechanism. The ring buffer models the medium (a string tied down at both ends) in which the energy travels back and forth. The length of the ring buffer determines the fundamental frequency of the resulting sound. Sonically, the feedback mechanism reinforces only the fundamental frequency and its harmonics (frequencies at integer multiples of the fundamental). The energy decay factor (.996 in this case) models the slight dissipation in energy as the wave makes a round trip through the string.

	The averaging operation. The averaging operation serves as a gentle low-pass filter (which removes higher frequencies while allowing lower frequencies to pass, hence the name). Because it is in the path of the feedback, this has the effect of gradually attenuating the higher harmonics while keeping the lower ones, which corresponds closely with how a plucked guitar string sounds.






Task 5: Iteration and Exceptions

As an exercise in making your data structures more industrial strength, we’ll add the ability to iterate through a BoundedQueue and also ensure that it throws exceptions when given invalid inputs. We’ll cover these topics on Monday 2/22.


BoundedQueue

First, modify your BoundedQueue<T> interface so that it extends Iterable<T> and add the required abstract method to the interface. You’ll need to import java.util.Iterator.




AbstractBoundedQueue

Consider your AbstractBoundedQueue. You don’t need to change anything in this class to support iteration. Make sure you understand why.




ArrayRingBuffer

Now finally add the required iterator() method to ArrayRingBuffer. You’ll need to define a private class that implements the Iterator interface. See lecture 14 for an example: github slides.




Exceptions

Now modify ArrayRingBuffer so that it throws a RuntimeException with the String “Ring Buffer Overflow” when a user attempts to enqueue into a full ArrayRingBuffer, and “Ring Buffer Underflow” when a user attempts to deque an empty ArrayRingBuffer.


  
    
    
    Prerequisites
    
    

    
 
  
  

    
      
          
            
  ~ number: 2b
~ title: Setting Up IntelliJ


Prerequisites


	Java 8 - You finished lab 1b

	You have successfully created your local repo for the class on your own machine. This is the 3-letter directory you created and set up in lab 1.






Installing IntelliJ

If you’re working on the lab computers, skip this step.


	You’ll need to install the Community Edition of IntelliJ from the Jetbrains [https://www.jetbrains.com/idea/download/] website.

	After selecting the appropriate version for your OS (Mac OSX, Windows, or Linux), click download and wait a few minutes for the file to finish downloading.

	Run the install file and follow the prompts to install IntelliJ onto your computer. You can stick to all the default settings. Feel free to install IdeaVim if you’re a vim user.






Project Setup

IntelliJ is an IDE (Interactive Development Environment). It’s like a text editor (ie Sublime) but it’s chock full of extra features. In order to run your files in this special environment where we can work our IDE magic, we need to import our files into a project, similar to how you might import images or clips into a project for a program like iMovie or Windows Movie Maker. Fortunately, this is a fairly painless process.

These instructions apply for both initial setup and for future assignments. When you run git pull skeleton master to retrieve a new assignment and you notice that you have a new assignment directory (next week, you’ll have lab3/) simply run through these steps again from 1 to 8. This will likely involve pressing next for all steps and, if IntelliJ asks you to overwrite various housekeeping files (such as .iml files) because they already exist, respond “Yes” or “Overwite” to those popup windows. This is so IntelliJ can automatically mark the new directories for your assignment to work with IntelliJ for you as opposed to you manually marking directories as source folders and/or modules.

Begin the setup process by starting up IntelliJ. If you’re on one of the lab computers, use the command /share/instsww/bin/idea.sh command in a terminal window to start IntelliJ. Then follow the steps below.


	Upon opening IntelliJ, click on the “import project” option.
[image: IntelliJ Start Menu]

	Find and choose your 3-letter repo/directory then press the ok button. Don’t worry if yours doesn’t have all the assignments; yours will look like this by the end of the course! From here on out, you should be able to simply select next for every screen but to be safe in the face of shenanigans, more screenshots follow.



If you get to a point where you see a message that says No SDK specified, stop at step 8!

![IntelliJ Select Folder](img/select_folder.png)






	Make sure “Create project from existing sources” is selected and press next. You shouldn’t have to change anything at this step.
[image: Import Project]

	Leave theses fields untouched and press next.
[image: Project Name]

	Do nothing here and press next. For context, IntelliJ is automagically detecting what your Java files are and self-configuring itself to edit and run them. Once again, don’t be scared about the large number of files here; yours should only contain lab1 and maybe lab2 (if you’ve pulled lab2 already).
[image: Import Sources]

	Once again, do nothing and press next. This step, we are importing all the jars (Java ARchives) we’ve given that some of the programs we give you and you write might depend on.
[image: Import Lib]

	This screen might not pop up for you; that’s fine. If it does, that’s also fine. Press next.
[image: Config Modules]

	SLOW DOWN!!! You actually might need to do something here! If you see 1.8 on the left sidebar, you’re in the clear and can simply press next then click finish on the final screen and voila, your project is set up and you can skip steps 9 and 10! Otherwise, continue on to steps 9 and 10.
[image: Select SDK]

	Click the plus in the upper left corner and click jdk from the drop-down menu
[image: Add JDK]

	Find where your jdk is saved, select it, and press ok button. On my Mac, it was at “/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home”. If you’re on Windows, your path may look like “C:\Program Files\Java\jdk1.8.0_65”. If you’re on a lab computer, it should be at “/usr/lib/jvm/Java-8-oracle/”. Once this window closes and your screen looks like the image at step 8, press next, then finish, and you’re done!
[image: Select JDK]






Relax for a Bit

The first time you start up IntelliJ it’s going to spend some time indexing files. This may take a few minutes. There should be a little progress bar in the bottom right. Once it’s done, a sidebar will appear.




Sanity Check

To test that your program works, use the sidebar of your workspace to navigate to the program you wrote in lab1 (Year.java), right click either the java file in the navigation sidebar on the left or on the text editor portion of the IDE and select the run option.
[image: Test Run]

You may get an error about “duplicate classes” in your proj0 directory. The problem is that we have copies of StdDraw.java, StdOut.java, and In.java in both the proj0 and proj0/examples folder. This wasn’t a problem before because command line compilation using javac for proj0 only considered .java files in the folder at the time you called javac. However, IntelliJ has a much wider field of view, and treats your entire login folder as one huge project, getting very upset if it sees two classes with the same name.

To fix this error, simply delete StdDraw.java, StdOut.java and In.java from your proj0/examples directory. This means that you won’t be able to run the demos from the command line anymore (unless you use IntelliJ to run them). Project 0 should still work.

You’ll notice after this, the green play and green bug icons in the upper right (next to the right bug) are now green; this is because the previous step set up the run configuration for this program and you can now click this button to run your program. You should also notice in the console below the text editor, your program ran but your program should have printed something stating you need to input command line arguments. We’ll go over inputting command line arguments in lab2, our IDE features lab.
[image: Test Output]




Embedded Terminal (Optional)

IntelliJ has the cool feature that you can have a working terminal in the workspace so you don’t have to constantly switch between having IntelliJ and your terminal, if that becomes necessary for whatever reason.

For Mac users, you should be able to skip this setup section. Windows users will likely have to put in a little leg work. This setup assumes you are a Windows user and you have git bash installed.

First, find the preferences/settings tab and select it (Or use Ctrl+alt+s)
[image: Preferences]

Type in “terminal” in the search bar. Once there, type in “C:\Program Files (x86)\Git\bin\sh.exe –login -i” into the Shell Path field. Click ok.

[image: Terminal]

To test if you’ve properly set this up, hover over the little box in the bottom left corner and select terminal; the bottom third of your screen should now be a terminal, the equivalent of having git bash right there.

[image: Terminal Test]

Try typing something in! If you’re able to run basic commands like “ls” or “cd” or “echo ‘Hello world’” you’ve done it!

[image: Terminal Test]





          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 1b
~ title: Data Structures Part 2

This is the second part of project 1. Part 1C will be released by Sunday. While projects 1B and 1C have been combined into a single deadline (2/11) the specification and autograder for 1C  will be separate for logistical and conceptual simplicity.

This project is brand new. Please let us know on Piazza if you spot any bugs or issues.


Introduction

In project 1b, you will build a rudimentary autograder for project 1a. In the skeleton, we have provided the following files:


	StudentArrayDeque.class: A buggy implementation of ArrayDeque.

	StudentLinkedListDeque.class: A buggy implementation of LinkedListDeque.

	ArrayDequeSolution.class: A correct implementation of ArrayDeque.

	LinkedListDequeSolution.class: A correct implementation of LinkedList.

	FailureSequence.java: A utility class for this assignment.

	DequeOperation.java: A utility class for this assignment.

	examples/: A folder with some examples that may be helpful.

	proj1b.jar: For use with IntelliJ. Contains all of the listed .class files above.



Your goal for part 1B is to create at least two Java files: TestArrayDeque1B.java and TestLinkedListDeque1B.java. There is no specific API (that is, no specific methods that you must implement).

For this project, you are allowed to work with a partner, and your partner must be the same as you had for part a. If you wish to dissolve your partnership from part a, please send an email to the course staff for approval.




Getting the Skeleton Files

As with project 1, pull the skeleton using the command git pull skeleton master.

If you’re using IntelliJ make sure to reimport the project. After you’ve done this, right click (or two finger click) on the proj1b jar file and select “Add as Library”.




Phase 1: Finding the Bugs

We’ve provided buggy implementations of the project 1a assignment, namely StudentArrayDeque.class and StudentLinkedListDeque.class. Note that we’ve provided the class files only. Despite not having access to the .java files for these buggy implementation, your code that uses these classes will still compile and run just fine.

You should start by making sure you can write code that uses the StudentArrayDeque and StudentLinkedListDeque classes. An example is provided in the examples/StudentArrayDequeLauncher.java file.

In TestArrayDeque1B.java, you should give a JUnit test that StudentArrayDeque fails. Likewise in TestLinkedListDeque1B.java, you should give a JUnit test that StudentLinkedListDeque fails. Any tests you write should succeed for a correct implementation, e.g. you can’t just do assertEquals(5, 10) and consider youself done with project 1B.

In this first phase of this project, you should simply write JUnit tests which are capable of consistently finding at least one bug in each of these two classes. For example, when you run TestArrayDeque1B, some assertEquals statement should get triggered into displaying an error.

*Important: When building tests, you must select Integer as your test type, StudentArrayDeque<Integer>. *

You are not required to write randomized tests (like those from the project 1A autograder), but this is probably the easiest and laziest way to succeed.

Once you feel reasonably comfortable that your JUnit tests are capable of identifying failures in a buggy implementation, it’s time to improve your autograder.




Phase 2: Printing Out a Failure Sequence

Of course, simply telling the student that their code fails is only going to lead to tears, sadness, confusion and late night Piazza posts. Thus, you’re going to modify your autograder sot that it tells the student something useful.

To do this, we’ll take advantage of the assertEquals(message, expected, actual) [method](http://junit.sourceforge.net/javadoc/org/junit/Assert.html#assertEquals(java.lang.String, long, long)

), which outputs a helpful message to the user.

For an example of how this method works, see AssertEqualsStringDemo.java in the examples folder.

The string message provided to assertEquals must be a series of method calls that yields an incorrect return value. For example, if adding 5 to the front, then 3 to the front, then removing from the front yields an incorrect value, then the String message passed to assertEquals should be exactly the following:

addFirst(5) 
addFirst(3)
removeFirst()





You do not need to supply the expected and actual values as part of the String message, since those are passed separately to the assertEquals statement.

You should not attempt to idenftify weird corner cases that cause the Student input to crash. See the FAQ for more.

To make your life easier, we’ve provided optional helper classes DequeOperation.java and FailureCase.java. You are not required to use these files, and you’re free to modify them however you wish. However, if you DO use them, you should make sure to submit them to gradescope. For examples of how to use these classes, see FailureSequenceDemo.java. If you have previous Java experience, we recommend not using these files, then later comparing your solution to how we did things using these files.




Submission

Submit TestArrayDeque1B.java, TestLinkedListDeque1B.java, and any supporting files you created or require, including DequeOperation.java and FailureCase.java. Do not submit .class files.




Tips


	Start with ArrayDeque. A bug will be easier to find.

	assertEquals will not work the way you’d hope with Deques. For example assertEquals(deque1, deque2) will not return true if all the items are the same. You’ll need to write your own comparison method if you want to compare entire deques.

	It’s probably not a good idea to write a Deque comparison function. Suppose you write a compareDeques(studentDeque, solutionDeque) method that returns false. Even if this function returns false, that doesn’t give you an operation that causes a failure. It’s much easier to test the output of single operations (e.g. student.removeFirst() vs. solution.removeFirst()).

	The StdRandom class is the easiest way to generate random numbers. See the official documentation [http://introcs.cs.princeton.edu/java/stdlib/javadoc/StdRandom.html] for a list of methods.

	There’s no need to do any exception catching or throwing on this assignment (we haven’t learned this in 61B yet).

	Build your failure sequence as you perform operations.






Frequently Asked Questions


I found a bug in StudentArrayDeque! If I call get(5) when there are only 3 items it crashes. However, I can’t figure out how to get assertEquals to report the message in a nice way.

You’re required to find a bug for which the student solution returns the wrong answer, not one for which it crashes. I know this is a little artificial, but I felt it was a more interesting autograder component for your to write.




You know what, I found a bug in ArrayDequeSolution! The very same one that is in StudentArrayDeque. get(5) crashes on an empty ArrayDequeSolution instead of returning null.

Well, that’s embarassing. Rather than fix this, we’ll leave this bug in to encourage people to come to this FAQ and see the first question.




How would I write a test for printDeque()?

It would be rather involved, and our autograder autograder isn’t quite smart enough to be able to read your output anyway. Stick with the other methods. If you’re curious, google “redirect standard output”.




I’m getting a “reference to assertEquals is ambiguous” error.

Always try searching the web for mysterious error messages. Recall that self-sufficiency as a programmer is a major goal of 61B. I think the first hit on Google should be enough, but certainly post to Piazza if you’re still stuck.




The autograder is complaining about my failure sequences.

As you might imagine, the autograder for project 1B is a weirdly complex beast, as it is has to autograde autograder output. To keep things simple the String argument to a failing assert must contain a failure sequence and ONLY a failure sequence, and all tests must fail due to a failing assert. There should be no failures due to null pointer exceptions. The String argument to your assert statement must contain no extraneous information.







          

      

      

    

  

  
    
    
    Representing a Tree With an Array
    
    

    
 
  
  

    
      
          
            
  ~ number: 10
~ title: Priority Queues


Representing a Tree With an Array

You’ve seen two approaches to implementing a sequence data structure: either using an array, or using linked nodes. We extended our idea of linked nodes to implement a tree data structure. It turns out we can also use an array to represent a tree.

Here’s how we implement a binary tree:


	The root of the tree will be in position 1 of the array (nothing is at position 0). We can define the position of every other node in the tree recursively:

	The left child of a node at position n is at position 2n.

	The right child of a node at position n is at position 2n + 1.

	The parent of a node at position n is at position n/2.






Working With Binary Heaps


Binary Heaps Defined

In this lab, you will be making a priority queue using a binary min-heap (where smaller values correspond to higher priorities). Recall from lecture: Binary min-heaps are basically just binary trees (but not binary search trees) – they have all of the same invariants of binary trees, with two extra invariants:


	Invariant 1: the tree must be complete (more on this later)

	Invariant 2: every node is smaller than its descendants (there is another variation called a binary max heap where every node is greater than its descendants)



Invariant 2 guarantees that the min element will always be at the root of the tree. This helps us access that item quickly, which is what we need for a priority queue.

We need to make sure binary min-heap methods maintain the above two invariants. Here’s how we do it:

Add an item


	Put the item you’re adding in the left-most open spot in the bottom level of the tree.

	Swap the item you just added with its parent until it is larger than its parent, or until it is the new root. This is called bubbling up or swimming.



Remove the min item


	Swap the item at the root with the item of the right-most leaf node.

	Remove the right-most leaf node, which now contains the min item.

	Bubble down the new root until it is smaller than both its children. If you reach a point where you can either bubble down through the left or right child, you must choose the smaller of the two. This process is also called sinking.






Complete Trees

There are a couple different notions of what it means for a tree to be well balanced. A binary heap must always be what is called complete (also sometimes called maximally balanced).

A complete tree has all available positions for nodes filled, except for possibly the last row, which must be filled from left-to-right.




Writing Heap Methods

The class ArrayHeap implements a binary min-heap using an ArrayList instead of a manually resized array. Fill in the missing methods in ArrayHeap.java.

Respect the abstraction! – insert, removeMin, and changePriority may use the methods bubbleUp and bubbleDown. bubbleUp and bubbleDown may use getLeft, getRight, and getParent.

You may find the Princeton implementation of a heap [http://algs4.cs.princeton.edu/24pq/MinPQ.java.html] useful. Unlike the Princeton implementation, we store items in the heap as an ArrayList of Nodes, instead of an array of Key. This is because we want to avoid manual resizing, and also because we want to support priority changing operations.






Submission

To submit, you don’t need a zip file this time, just ArrayHeap.java and MagicWord10.java.




FAQ


What should setLeft and setRight do if a node already exists?

In this case, it’s OK to just overwrite the old left or right node.




The toString method is causing a stack overflow and/or the debugger seems super slow.

The debugger wants to print everything out nicely as it runs, which means it is constantly calling the toString method. If something about your code causes an infinite recursion, this will cause a stack overflow, which will also make the debugger really slow. The most common culprit seems to be an incorrect getLeftOf and/or getRightOf.







          

      

      

    

  

  
    
    
    Getting the Skeleton Files
    
    

    
 
  
  

    
      
          
            
  ~ number: 7
~ title: Huffman Coding


Getting the Skeleton Files

As usual, run git pull skeleton master to get the skeleton files.




Introduction

In this homework, you’ll implement a Huffman encoder and decoder, as described in lecture 38 [https://docs.google.com/presentation/d/1CtOjPiNA4PQOa_kw033n88Z7INyzzG6vEB35iEda2xk/edit?usp=drive_web].

The majority of the work will be in building the Huffman decoding trie. For the purposes of this homework, the “less frequent” branch of your Huffman coding trie should always be the ‘0’ side, and the more common side should always be the ‘1’ side.

For example, suppose we have the file below:

    abbccccdddddeeeeee





This file has 1 a, 2 bs, 4 cs, 5 ds, and 6 es. The unique Huffman decoding trie for this file is as shown below. For example, the letter b corresponds to the binary seqeuence 001.


[image: BinaryTrie]





BinaryTrie

Create a class BinaryTrie that obeys the API below. The vast majority of the work for this homework is in creating this class.

public class BinaryTrie implements Serializable {
    public BinaryTrie(Map<Character, Integer> frequencyTable)
    public Match longestPrefixMatch(BitSequence querySequence)
    public Map<Character, BitSequence> buildLookupTable()
}





Constructor. Given a frequency table which maps symbols of type V to their relative frequencies, the constructor should build a Huffman decoding trie according to the procedure discussed in class. You may find implementations of Huffman codes on the web useful for inspiration, e.g. [http://algs4.cs.princeton.edu/55compression/Huffman.java.html](this implementation).

longestPrefixMatch. The longestPrefixMatch method finds the longest prefix that matches the given querySequence and returns a Match object for that Match. The Match class is a simple container class with the following API:

public class Match {        
    public Match(BitSequence sequence, char symbol)
    public char getSymbol()
    public BitSequence getSequence()
}





The longestPrefixMatch class takes as an argument objects of type BitSequence, described in more detail below.

For example, for the example Trie given in the introduction, if we call trie.longestPrefixMatch(new BitSequence("0011010001")), then we will get back a Match object containing b as the symbol and 001 as the BitSequence. The method is called longestPrefixMatch because 001 is the longest prefix of 0011010001 that is a match inside our decoding binary trie.

buildLookupTable. The buildLookupTable method returns the inverse of the coding trie. For example, for the example Trie given in the introduction, this method should return the same map as:

    HashMap<Character, BitSequence> expected = new HashMap<Character, BitSequence>();
    expected.put('a', new BitSequence("000"));
    expected.put('b', new BitSequence("001"));
    expected.put('c', new BitSequence("01"));
    expected.put('d', new BitSequence("10"));
    expected.put('e', new BitSequence("11"));





This is because the character a corresponds to the bitSequence 000, the character b corresponds to the bitSequence 001 and so forth.

Testing. We have provided a client side test called TestBinaryTrie that you should use to make sure you understand your objectives, and also to test your code.




HuffmanEncoder

Once you’ve written AND tested your BinaryTrie, implement the class HuffmanEncoder, with the following API:

public class HuffmanEncoder {
    public static Map<Character, Integer> buildFrequencyTable(char[] inputSymbols)
    public static void main(String[] args) 
}





buildFrequencyTable. The buildFrequencyTable method should map characters to their counts. For example, suppose we have the character array [‘a’, ‘b’, ‘b’, ‘c’, ‘c’ , ‘c’, ‘c’, d’, ‘d’, ‘d’, ‘d’, ‘d’, e’, ‘e’, ‘e’, ‘e’, ‘e’, ‘e’], then this method should return a map from ‘a’ to 1, ‘b’ to 2, and so forth.

The main method. The main method should open the file given as the 0th command line argument (args[0]), and write a new file with the name args[0] + ".huf" that contains a huffman encoded version of the original file. For example java HuffmanEncoder watermelonsugar.txt should generate a new Huffman encoded version of watermelonsugar.txt that contains watermelonsugar.txt.huf.

Pseudocode for the Huffman encoding process is given below:

1: Read the file as 8 bit symbols.
2: Build frequency table.
3: Use frequency table to construct a binary decoding trie.
4: Write the binary decoding trie to the .huf file.
5: (optional: write the number of symbols to the .huf file)
6: Use binary trie to create lookup table for encoding.
7: Create a list of bitsequences.
8: For each 8 bit symbol:
    Lookup that symbol in the lookup table.
    Add the appropriate bit sequence to the list of bitsequences.
9: Assemble all bit sequences into one huge bit sequence.
10: Write the huge bit sequence to the .huf file.





Some of these tasks are tricky and require knowledge of special libraries. To save time, we have provided a number of utility methods to make this process easier for you. Using these methods is optional.

1: char[] FileUtils.readFile(String filename)
4/5/10: ObjectWriter's writeObject method.
9: BitSequence BitSequence.assemble(List<BitSequence>)





See ObjectWritingAndReadingDemo.java for a demo of how to use the ObjectWriter and ObjectReader classes to write Java objects to files for later loading.

Important: Do not call writeObject once for each symbol! This will result in huge files, very slow performance, and a very complex decoder! For your sanity, use BitSequence.assemble!

Try running your file on the provided text files: watermelongsugar.txt and signalalarm.txt. You should see a modest decrease in file size for both. Your code should take no more than seconds to execute. There are no tests for HuffmanEncoder because the precise behavior is not specified.




HuffmanDecoder

Once you’ve written HuffmanEncoder and verified that it is able to generate files that are smaller than the ones passed in, write a class HuffmanDecoder that reverses the process, with the following API:

public class HuffmanDecoder {
    public static void main(String[] args)
}





The main method. The main method should open the file given as the 0th command line argument (args[0]), decode it, and and write a new file with the name given as args[1]. For example java HuffmanDecoder watermelonsugar.txt.huf originalwatermelon.txt should decode the contents of watermelonsugar.txt.huf and write them into originalwatermelon.txt.

Pseudocode for the Huffman decoding process is given below:

1: Read the Huffman coding trie.
2: If applicable, read the number of symbols.
3: Read the massive bit sequence corresponding to the original txt.
4: Repeat until there are no more symbols:
    4a: Perform a longest prefix match on the massive sequence.
    4b: Record the symbol in some data structure.
    4c: Create a new bit sequence containing the remaining unmatched bits.
5: Write the symbols in some data structure to the specified file.





As above, we have provided utility methods to make your life easier:

1/2/3: ObjectReader's readObject method.
4c: BitSequence has methods that may be useful to you.
5: FileUtils.writeCharArray(String filename, char[] chars)





Your HuffmanDecoder should perfectly decode the output of your HuffmanEncoder. For example, if we run the following commands:

java HuffmanEncoder watermelonsugar.txt
java HuffmanDecoder watermelonsugar.txt.huf originalwatermelon.txt
diff watermelonsugar.txt originalwatermelon.txt





Then the output of the diff command should be nothing. This is because diff is a command line tool that compares two files, and prints out any differences. If the files have no differences, nothing is output.

Your HuffmanEncoder and HuffmanDecoder should work for ANY file, not just English text, and even if the input isn’t a text file at all!


FAQ

Coming soon in response to questions.




Submission

Submit your HuffmanEncoder.java, HuffmanDecoder.java, BinaryTrie.java, and any supporting files you created.







          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  Nothing to see here.



          

      

      

    

  

  
    
    
    Introduction
    
    

    
 
  
  

    
      
          
            
  ~ number: 14
~ title: Fractal Sound


Introduction

In this week’s lab, you’ll explore the world of building audio from scratch, vaguely similar to what we did for the sound generator in HW1.




Skeleton Files

After you pull from the skeleton repo, you’ll have a few key files:


	Generator.java

	GeneratorPlayer.java

	GeneratorDrawer.java

	GeneratorAudioVisualizer.java

	Soundulate.java



Generator is an interface that defines the expected behavior of any Generator class. Each Generator simply needs a method next that returns the next double. GeneratePlayer plays the samples returned by the generator as sound. GeneratorDrawer draws the samples returned by the generator as a graph. GeneratorAudioVisualizer both plays and draws the samples.




Playing with the Sine Wave Generator


Creating and Using a Simple Generator

Open up Soundulate.java, and add the follow lines to main:

    Generator generator = new SineWaveGenerator(440);
    GeneratorPlayer gp = new GeneratorPlayer(generator);
    gp.play(1000000);





What this does is:


	Creates a SineWaveGenerator that outputs samples corresponding to a 440 Hz sine wave.

	Creates a GeneratorPlayer that will play the SineWaveGenerator.

	Tells the GeneratorPlayer to play the first one million samples from the generator as sound.



Try compiling and running GeneratorPlayer, and you should hear a high pitched beep sound. If working from the command line, you can press Control-C to halt execution.

Try changing the 440 to a 200 Hz, and you should hear a lower sound. Note that if you try even lower frequencies, your laptop speakers are likely too small to generate anything lower than ~60 Hz. However, if you use headphones or real speakers, you’ll be able to hear such low frequencies.




Using the Generator Visualizer

We can also visualize the output of a generator. Replace the main method of Soundulate.java with the following:

    Generator generator = new SineWaveGenerator(200);
    GeneratorDrawer gd = new GeneratorDrawer(generator);
    gd.draw(4096);





What this does is:


	Creates a SineWaveGenerator that outputs samples corresponding to a 200 Hz sine wave.

	Creates a GeneratorDrawer that will draw the GeneratorDrawer.

	Tells the GeneratorDrawer to draw the first 4096 samples from the generator as a graph.



Run this and you should see something like:


[image: SineWave]





Using the GeneratorAudioVisualizer

Finally, we can do both playing and drawing using GeneratorAudioVisualizer.java. Replace the main method of Soundulate.java with the following:

    Generator generator = new SineWaveGenerator(200);
    GeneratorAudioVisualizer gav = new GeneratorAudioVisualizer(generator);
    gav.drawAndPlay(4096, 1000000);





Try this out, and you should see the first 4096 samples being drawn and the first 1,000,000 samples being played. The reason that we make these parameters different is that if we draw 1,000,000 samples, we won’t be able to see anything useful.




Using the MultiGenerator

As a last exercise in using the existing Generators, try the following out in Soundulate.java:

    Generator g1 = new SineWaveGenerator(200);
    Generator g2 = new SineWaveGenerator(201);

    ArrayList<Generator> generators = new ArrayList<Generator>();
    generators.add(g1);
    generators.add(g2);
    MultiGenerator mg = new MultiGenerator(generators);

    GeneratorAudioVisualizer gav = new GeneratorAudioVisualizer(mg);
    gav.drawAndPlay(500000, 1000000);





You should hear a neat sound – if you have better speakers, I recommend trying out 60 and 61 hz tones instead. This phenomenon of pulsing volume is known as a [beat](https://en.wikipedia.org/wiki/Beat_(acoustics).






Task 1: Generating a SawTooth

Your first major goal is to generate a SawToothGenerator class. Given the method below:

    Generator generator = new SawToothGenerator(512);
    GeneratorAudioVisualizer gav = new GeneratorAudioVisualizer(generator);
    gav.drawAndPlay(4096, 1000000);





It should draw the waveform below:


[image: SawTooth]


Specifically, this waveform should start at -1.0 and linearly increase towards 1.0, before resetting back to -1.0. The argument to SawToothGenerator describes the period of the waveform, i.e. the number of samples before it resets back down to -1.0.

For this task, you should create SawToothGenerator so that it behave as above.

Hints:


	This should be relatively straightforward. Don’t overthink it.

	You should use the % operator, with the period as the argument to the right of the %.

	Your SawToothGenerator should have two instance variables of type int: period and state.

	The argument for the SawToothGenerator should be an integer, not a double.

	The argument for the SawToothGenerator constructor is the period, not the frequency.

	There should not be any usage of Math.PI or Math.sin in your code.

	The state of your generator should still be an integer that increments by 1 each time.

	Create a state variable that varies between 0 and period - 1, and write a helper function called normalize that converts values between 0 and period - 1 to values between -1.0 and 1.0.



For extra fun, use the MultiGenerator to play multiple sawtooth or sine waves in combination with each other.




Task 2: Generating an AcceleratingSawTooth

Next, we’ll generate an AcceleratingSawToothGenerator. Given the method below:

    Generator generator = new AcceleratingSawToothGenerator(200, 1.1);
    GeneratorAudioVisualizer gav = new GeneratorAudioVisualizer(generator);
    gav.drawAndPlay(4096, 1000000);





This code should draw the waveform below:


[image: AccleratingSawTooth]


Specifically, this waveform should start at -1.0 and linearly increase towards 1.0, before resetting back to -1.0. The first argument to SawToothGenerator describes the period of the waveform, i.e. the number of samples before it resets back down to -1.0. After resetting, the period should change by a factor of the second argument, rounded down. So, in the example above, the period of the second sawtooth should be 220 samples, the 3rd should be 242 samples, the 4th should 266 (which is 266.2 with the 0.2 truncated off).

Experiment with different period factors to see how the sound changes. Anything outside the range 0.9 to 1.1 isn’t going to sound particularly interesting since the period will change too quickly.




Task 3: Generating a Fractal Sound

One feature of Java that we haven’t discussed in 61B this semester are bitwise operations. These include &, |, >>, >>>, and <<. These operations take two integers and perform operations on those integers in a bitwise manner.


The & Operation

As an example of a bitwise operation, consider the following expression:

    int x = 231 & 62;





After this expression executes, the integer x will be 38. The reason is that the & operation generates a new integer where the ith bit is 1 if the ith bit of 231 is 1 AND the ith bit of 62 is 1, and 0 otherwise. Or written out:

    231: 11100111
    62:  00111110

    x:   00100110





Note that x has a 1 only in positions where 231 and 62 have a 1. If we convert 00100110 from binary into decimal, we get 38, since 32 + 4 + 2 = 38.




The >> Operation

As another example, consider the expression:

    int x = 231 >>> 3;





After this expression executes, the integer x will be 28. The reason is that the >>> operation moves all bits in the number 3 bits to the right, filling in any top digits with zeros. Or written out:

    231:       11100111
    231 >>> 1: 01110011
    231 >>> 2: 00111001
    231 >>> 3: 00011100





If we convert 00011100 from binary into decimal, we get 16 + 8 + 4 = 28.




Generating a Fractal Sound Using Bitwise Operations

Make a copy of your SawToothGenerator.java called StrangeBitwiseGenerator.java. This time, create a temporary variable that is the modulus of the state & a copy of the the state right shifted by 3 places.

For example (your instance variables may be differently named, and the order of your lines may be different):

    state = state + 1;
    int weirdState = state & (state >>> 3) % period;





Important: Make sure you aren’t assigning the result of your bitwise operations back to state! Try playing/drawing weirdState (but normalized so that it fits in the range -1.0 to 1.0, as you did in SawToothGenerator), and you should see something like the following:


[image: StrangeBitwise]


Now try bitwise-ANDing the current time with a copy of the time right shifted by 3 places AND a copy of the time right shifted by 8 places.

    weirdState = state & (state >> 3) & (state >> 8) % period;





Try playing a normalized version of weirdState. You should hear something pretty amazing. Try experimenting by adding more shifted versions of the time, other bitwise operations, or even multigenerators. Feel free to post your favorite Generators on Piazza.

Note that the period of this new audio signal is no longer given by the period variable. Instead, the period is somehow much longer. We will not explore the features of these strange fractal sounds, but you’re welcome to explore on your own if you’d like.






Submission

Submit a zip file containing SawToothGenerator.java, AcceleratingSawToothGenerator.java, StrangeBitwiseGenerator.java, and MagicWord14.java to Gradescope. The specifics of your StrangeBitwiseGenerator are not important (its output will not be tested), since its behavior is ill-defined.




P.S.

P.S. For an Illuminati time, try running:

    Generator generator = new StrangeBitwiseGenerator(1024);
    GeneratorAudioVisualizer gav = new GeneratorAudioVisualizer(generator);
    gav.drawAndPlay(128000, 1000000);





with

    weirdState = state & (state >> 7) % period;









          

      

      

    

  

  
    
    
    Counting Sort
    
    

    
 
  
  

    
      
          
            
  ~ number: 13
~ title: Linear Sorting (It’s possible!)

This week in lab you’re going to be writing Counting sort and Radix sort.


Counting Sort


CountingSort.java

Counting sort is a special sort of sort where we have the restriction that the sortable elements have to be able to be converted into numbers.

In this sort, we simply count the number of occurrences of each value in the array and then go through this counts array in order and fill in the sorted array with the number of counts each value has.

However, standard implementations are unable to handle negative numbers. Look at and try running CountingSortTester and you’ll see that the provided naiveCountingSort cannot handle an array with negative numbers.

Fill in the betterCountingSort method so that it still does a counting based sort, but also handles negative numbers gracefully.

For fun (optional): Add a test to CountingSortTester that causes your betterCountingSort to fail.






Radix Sort


RadixSort.java

In this part of lab you’ll write an implementation of radix sort for ASCII Strings. Normally, if we just had decimal numbers, we would say that we would have a radix of 10 (R = 10) since there are 10 possible digits at each index, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. It is important to note that the time Radix Sort takes does depend on the length of the longest value it has to sort. We consider running Radix Sort to be linear time for integers in Java because the number of digits allowed for an integer is limited (10 digits max) which means we will at most have to do 10N iterations.

For our purposes in this lab, we are going to be sorting ASCII Strings which have 256 possible characters (numbered 0-255) and are of variable length. In JAVA, you can get the ASCII code for a character by casting the char as an int (int i = (int)'a') and get the character from the ASCII code by casting the other way (char a = (char)97). You may implement either MSD (most significant digit) or LSD (least significant digit), but one is significantly easier (think about how you would sort words in your mind).

Since we have 256 characters to use, we have a radix of 256 (R = 256). Write the method ‘sort’ in RadixSort.java that will sort the list of ASCII Strings that is passed in and return the sorted list. Make sure the method is NON-destructive (so the original list cannot change). Feel free to add any helper methods you want (you can also use your counting sort implementation). Here [https://www.cs.usfca.edu/~galles/visualization/RadixSort.html] is a great tool for seeing how Radix sort works visually.

Keep in mind that Radix Sort on Strings runs in O(N*M) time where N is the number of Strings and M is the length of the longest String. HINT: Remember ASCII codes start from 0, not 1.

Extra for experts (optional): Compare the runtime of your Radix sort compared to Arrays.sort. Which is faster for short arrays? Long arrays? Do the values in the array matter?






Submission

Submit zip file with CountingSort.java, CountingSortTester.java, RadixSort.java, and MagicWord13.java.

Note the MagicWord has been provided for free, since we will not cover counting sort untli the day of the lab.





          

      

      

    

  

  
    
    
    Pre-lab: Generic Collections
    
    

    
 
  
  

    
      
          
            
  ~ number: 6
~ title: HugLife


Pre-lab: Generic Collections

This week in lecture, we learned how to work with generic collections. Let’s review.


Java before generics (pre-2004)

To date, we’ve seen collections that hold values of a particular type. For example, an AList is pre-defined to hold ints:

public class AList {

    private int[] items; // items are ints
    private int size; 

    public int get(int i) { // Returns an int
        // ...
    }

    public void insertBack(int x) { // Takes an int
        // ...
    }

    // ...
}





We could imagine a class called ObjectList, which is like AList except that it can hold values of any type. It would look something like this:

public class ObjectList {

    private Object[] items; // items are Objects
    private int size;

    public Object get(int i) { // Returns an Object
        // ...
    }

    public void insertBack(Object x) { // Takes an Object
        // ...
    }

    // ...
}





Let’s look at an example. Suppose we run the following:

ObjectList dogs = new ObjectList();
Dog fifi = new Dog("Fifi");

dogs.insertBack((Object) fifi); // The (Object) cast here is optional (why?)





Can you see why ObjectList would be hard to use? The get() method in ObjectList returns objects of type Object. In order to get a member ObjectList as a Dog, you would need to downcast back to the actual type:

Dog dog1 = dogs.get(0);       // Won't compile since dogs.get(0) returns an Object
Dog dog2 = (Dog) dogs.get(0); // Okay, but annoying





In fact, this introduces a type safety problem: since we can put any Object into our ObjectList, there’s no guarantee that the downcast will work!

ObjectList dogs = new ObjectList();
Cat toby = new Cat("Toby");

dogs.insertBack((Object) toby); // Okay
fifi = (Dog) dogs.get(0);       // Compiles, but throws ClassCastException at runtime








Java with generics

We need a way to tell Java that our list type is generic—

that it can hold values of any type, but only a single type at a time, chosen when the list is instantiated. Here’s how we do that:

public class GenericList<T> {

    private T[] items; // items are of type T
    private int size;

    public T get(int i) { // Returns an object of type T
        // ...
    }

    public void insertBack(T x) { // Takes an object of type T
        // ...
    }

    // ...
}





What’s going on here? We’ve defined a list type called GenericList that has a type parameter (T). Wherever you see a T is where the actual type argument will go, once it’s known.

Since GenericList is generic, we must provide a type argument whenever we instantiating a GenericList. For example, let’s make a GenericList that can hold Dog objects:

GenericList<Dog> dogs = new GenericList<Dog>();





Now this particular GenericList, which we’ve named dogs, will behave as though every T were replaced by Dog. So items will be of type Dog[], get() will return a Dog, and so on. And now no casting is required when we use get():

dogs.insertBack(fifi);
fifi = dogs.get(0); // No downcast from Object to Dog





And those pesky cats can’t get into our dogs list!

dogs.insertBack(toby); // Won't work





In fact, the code above won’t even compile—

since we declared dogs to be of type GenericList<Dog>, the Java compiler knows that the insertBack() method should only accept Dog objects and not Cat objects.




Four more things about generics

First, GenericList<Dog> is usually read as “GenericList of Dogs”. Makes sense, right?

Second, T is a common name for type parameters, but there’s nothing special about it. You could use U or V or even TypeArgumentGoesHere. But T is the typical name by convention.

Third, a generic class can have multiple type parameters:

public class Cons<U, V> {

    private U car;
    private V cdr;

}





Finally, when instantiating a generic class, the type argument can usually be replaced with <>. So the instantiation of dogs

GenericList<Dog> dogs = new GenericList<Dog>(); // From above





can be written as:

GenericList<Dog> dogs = new GenericList<>(); // Easier on the eyes





This makes your code easier to read, especially when you have something like

HashMap<Integer, HashMap<Integer, HashMap<String, Float>>> trans = new HashMap<>();





which is a HashMap mapping ints to HashMaps mapping ints to HashMaps mapping strings to floats.






Introduction

In this lab, you’ll create a package named creature that will implement two creatures (or more, if you’d like) that will inhabit a world simulated by the huglife package. Along the way we’ll learn how to debug small pieces of a much larger system, even if those small pieces happen to live inside another package.

####HugLife

Start the lab by booting up the HugLife simulator. To do this, use the following commands (make sure you’re in the lab6 directory):

$ javac -g huglife/*.java creatures/*.java
$ java huglife.HugLife samplesolo





This starts up a world called samplesolo. You should see a little red square wandering around randomly.

The creatures you’ll create in this assignment will go in the creatures/ directory, in these two files:


	Plip.java (skeleton provided)

	Clorus.java (you’ll need to create this)



Eventually these two types of creatures will also inhabit the world, and unlike this red guy, they actually do something interesting.

These classes will extend the huglife.Creature class, which provides a template that all creatures should follow.

####How the simulator works

Creatures live on an NxN grid, with no wraparound. Each square may be empty, impassible, or contain exactly one creature. At each tic (timestep), exactly one creature takes a single action. Creatures choose actions in a round-robin fashion.

There is a global queue of all creatures in the world, waiting their turn to take an action. When a creature is at the front of the queue, the world simulator tells that creature who its four neighbors are and requests a choice of action from the creature. More specifically, the world simulator calls the creature’s chooseAction() method, which takes as an argument a collection of all four neighbors. Based on the identity of the four neighbors, the creature then chooses one of exactly five actions: MOVE, REPLICATE, ATTACK, STAY, or DIE.

MOVE, REPLICATE, and ATTACK are directional actions, and STAY and DIE are stationary actions. If a creature takes a directional action, it must specify either a direction or a location. For example, if the acting creature sees a creature to its LEFT that it can eat, it might choose to ATTACK LEFT.

One of your main tasks for this lab is to write the code that makes Creature decisions. Actions are returned as objects of type Action, which are fully described in huglife/Action.java.

After a creature chooses an Action, the simulator enacts the changes to the world grid. You’ll be responsible for writing the code that tracks the state of each creature. For example, after the acting creature eats another creature, the acting Creature might become stronger, die, change colors, etc.

This will be accomplished by a callback to the creature, which is required to provide move(), replicate(), attack(), and stay() methods that describe how the state of the acting creature will evolve after each of these respective actions.

For example, if your creature chooses to replicate upwards by returning new Action(Action.ActionType.REPLICATE, Direction.TOP), then the game simulator is guaranteed to later call the replicate() method of the creature that made this choice.




Experimenting with the Sample Creature

Open up Occupant.java, Creature.java, and SampleCreature.java, which you’ll find in the huglife/ directory.


	Occupant is a general class for all possible things that can inhabit the grid of the HugLife universe. You’ll see that every Occupant inherits a name, shared by all instances of that Occupant subtype. Furthermore, every Occupant must provide a method that returns a color (more on this later). There are two special Occupant types, with names “empty” and “impassible”. These represent unoccupied and unoccupiable squares, respectively.

	Creature is a general class for all living things that can inhabit the grid of the HugLife universe. Every Creature has an energy level, and if that energy level ever falls below zero, the universe will choose the DIE action for them.
	Every creature must implement four callback methods: move(), replicate(), attack(), and stay(). These describe what the creature should do when each of these actions occurs. There is no die() method since the creature is simply removed from the world entirely.

	Creatures must also implement a chooseAction() method, and any reasonable creature will probably find the built-in getNeighborsOfType() method useful for doing so.





	SampleCreature is a sample Creature; in fact, it’s the lonely red square we saw earlier. The two creatures you implement for this lab will look somewhat similar to the SampleCreature, so you’ll want to consult this class later.



Make some changes to the sample creature and observe how they affect the HugLife simulation. As one of your experiments, you might have the SampleCreature react in some observable way when it sees a wall. You can do this by requesting a list of all neighbors of type “impassible” from the getNeighborsOfType() method.

The commands to run the simulator are the same as above:

$ javac -g huglife/*.java creatures/*.java
$ java huglife.HugLife samplesolo





Hint: After you’re done experimenting, you can use git checkout to revert your lab directory to its original state. Consult the documentation for Git if you don’t know how.




Creating a Plip

Now it’s time to add a new type of creature to the world. Go into the creatures/ directory, and you’ll see a file named Plip.java there, waiting to be filled out.

####Basic Plip functionality

Plips will be lazy (but motile) photosynthesizing creatures. They mostly just stand around and grow and replicate, but they’ll flee if they happen to see their mortal enemy, the Clorus.

Let’s start with just a few of the properties that we’ll eventually need for our Plip class.


	The name() method (inherited from Occupant) should return exactly “plip” with no spaces or capitalization. This is important, since creatures only know how to react to each other based on this name string. (Do you actually have to change anything to ensure this?)

	Plips should lose 0.15 units of energy on a MOVE action, and gain 0.2 units of energy on a STAY action.

	Plips should never have energy greater than 2. If an action would cause the Plip to have energy greater than 2, then it should be set to 2 instead.

	The color method for Plips should return a color with red = 99, blue = 76, and green that varies linearly based on the energy of the Plip. If the plip has zero energy, it should have a green value of 63. If it has max energy, it should have a green value of 255. The green value should vary with energy linearly in between these two extremes.



We could test our Plip class by sticking a bunch of Plips on a HugLife world grid and watching what they do as they run amok. However, it would be hard to determine whether everything was working correctly. Instead, let’s perform testing on the Plip class directly.


Note on testing: It’s not necessarily desirable to test everything! Use
tests only when you think they might reveal something useful, i.e. there is
some chance you’ll get something wrong. Figuring out what to test is a bit
of an art!


Open TestPlip.java, which is also in the creatures/ directory. You’ll see that a skeleton containing a few simple tests is provided. You can run these tests from the command-line like this:

$ javac huglife/*.java creatures/*.java
$ java creatures.TestPlip





Try it out and you’ll see that the testBasics test fails.

Now modify the Plip class according to the specifications above until all tests pass. When you’re done, you’ll be well on your way to having a fully functional Plip!

####The Plip replicate method

Now we’ll work on adding the correct replication property to our Plips, namely:


	When a Plip replicates, it keeps 50% of its energy. The other 50% goes to its offspring. No energy is lost in the replication process.



You’ll be filling out the replicate() method in Plip.java. Take a look at that now.

Before your start, write an appropriate test in the testReplicate() method. Be sure to check that the returned Plip is not the same Plip as the Plip whose replicate() method was called. You can use the JUnit assertNotSame() method for this purpose. (Do not confuse assertNotEquals() with assertNotSame(). See the JUnit documentation if the distinction is unclear!)

####The Plip chooseAction() method

All that’s left is giving the Plip a brain. To do this, you’ll be filling out the chooseAction() method.

The Plip should obey the following behavioral rules, in order of preference:


	If there are no empty spaces, the Plip should STAY.

	Otherwise, if the Plip has energy greater than 1.0, it should replicate to an available space.

	Otherwise, if it sees a neighbor with name() equal to “clorus”, it will move to any available empty square with probability 50%. It should choose the empty square randomly. As an example, if it sees a Clorus to the LEFT and to the BOTTOM, and “empty” to the TOP and RIGHT, there is a 50% chance it will move (due to fear of Cloruses), and if it does move, it will pick randomly between RIGHT and TOP.

	Otherwise, it will stay.



These rules must be obeyed in this strict order! Example: If it has energy greater than 1, it will always replicate, even if there are neighboring Cloruses.


Writing tests for chooseAction()

Before you start on chooseAction(), uncomment the @Test annotation tag for the testChoose() method in TestPlip.java. This will allow the testChoose test to run. The existing test checks the first rule, namely that if there are no empty spaces next to the Plip, then it should stay.

Add some more tests to testChoose(). You might find it useful to look at the code for the Action class to see the various constructors for Actions.

Don’t worry (yet) about testing the 50% rule if a Clorus is nearby. This isn’t possible since you haven’t created a Clorus class yet, and thus you won’t be able to create a HashMap that involves Cloruses.

Later, once you write the Clorus class, you might find it interesting to come back and try to write a randomness test. One possibility is to simply test that both choices are possible by making many calls and ensuring that each happens at least once. Performing a statistical test is probably a bit too much for lab today (though you’re welcome to try).

####Writing chooseAction()

After you’re happy with the tests you’ve written, edit the Plip class so that it makes the right choices. You’ll want to look carefully at the SampleCreature class as a guide.






Simulating Plips

Assuming your tests worked, you can now see how your Plips fare in the real HugLife world. Use the commands:

$ javac huglife/*.java creatures/*.java
$ java huglife.HugLife sampleplip





You should see your Plips happily growing along. If something goes wrong, it’s probably because your tests are not thorough enough. If this is the case, using the error messages, add new tests to TestPlip.java until something finally breaks. If you’re still stuck, let a TA or a lab assistant know!




Introducing the Clorus

Now we’ll implement the Clorus, a fierce blue-colored predator that enjoys nothing more than snacking on hapless Plips.

To begin, create TestClorus.java and Clorus.java in the creatures package. Unlike before, you’ll be writing these classes from scratch.

The Clorus should obey the following rules exactly:


	All Cloruses must have a name equal to exactly “clorus” (no capitalization or spaces).

	Cloruses should lose 0.03 units of energy on a MOVE action.

	Cloruses should lose 0.01 units of energy on a STAY action.

	Cloruses have no restrictions on their maximum energy.

	The color() method for Cloruses should always return the color red = 34, green = 0, blue = 231.

	If a Clorus attacks another creature, it should gain that creature’s energy. This should happen in the attack() method, not in chooseAction(). You do not need to worry about making sure the attacked creature dies—

the simulator does that for you.

	When a Clorus replicates, it keeps 50% of its energy. The other 50% goes to its offspring. No energy is lost in the replication process.

	Cloruses should obey exactly the following behavioral rules:
	If there are no empty squares, the Clorus will STAY (even if there are Plips nearby they could attack).

	Otherwise, if any Plips are seen, the Clorus will ATTACK one of them randomly.

	Otherwise, if the Clorus has energy greater than or equal to one, it will REPLICATE to a random empty square.

	Otherwise, the Clorus will MOVE to a random empty square.







As before, write a TestClorus class first. You probably don’t need to test the move(), stay(), or color() methods, but you’re welcome to. You should include at least one test for each type of action.

Once you’re done writing tests, write the Clorus class itself.

After you’ve written and tested the class thoroughly, go into HugLife.java and uncomment the lines in readWorld().




Showtime

We did it.

Now it’s time to watch Cloruses and Plips battling it out. Use the following command to kick off a Manichaean struggle that will end either in eternal oscillations or in lonely immortals wandering the wastes forever.

$ javac huglife/*.java creatures/*.java
$ java huglife.HugLife strugggz





If you did everything right, it should hopefully look cool. You might consider tweaking the HugLife simulator parameters, including the world size and the pause time between simulation steps. Be warned that world sizes above 50x50 are probably going to run fairly slowly.




Magic Word

In case you missed it: be sure to set TestPlip.MAGIC_WORD to this week’s magic word—

you’ll find the variable defined on line 20 of TestPlip.java.

If you’re submitting early, use “early” as the magic word.




Submission

Create a ZIP archive containing your creatures directory and upload it to Gradescope. If you don’t know how to create a ZIP archive, try to find instructions on Google before asking others for help.

The upload dialog should look something like this:

[image: Correct upload dialog]

Make sure the “Name” column is completely correct, or else the autograder won’t run correctly.

The autograder for this lab is very basic. If your HugLife simulation looks mostly right—

that is, if it resembles the animation [http://i.imgur.com/E2Kdowq.gifv] from the introduction—

you probably did everything correctly.





          

      

      

    

  

  
    
    
    A. Compiling Project 3
    
    

    
 
  
  

    
      
          
            
  ~ number: 11
~ title: Graphs

Due to late release of this lab, the magic word is given to you for free. It is “bean”.


A. Compiling Project 3

To ensure that your computer can run Project 3, complete the section entitled “Getting the Skeleton Files” [http://cs61b.ug/sp16/materials/proj/proj3/proj3.html#getting-the-skeleton-files]. We very strongly recommend using IntelliJ for this project, though it is not required. Make sure you are able to open localhost:4567 in your web browser. Once you’ve done this, you’re done with this part of lab.

Do not start reading the project 3 spec or start work on the project during this lab. If you’re having setup issues and nobody is available to help out, move on to part B of this lab until someone is available. If you can’t quite get this working by the end of your lab section, that’s fine. However, we strongly recommend being able to complete this section in either another lab or in Piazza by the end of Friday.




B. Introduction to our Maze Solver

In this lab, we’ll explore how various graph algorithms behave in the context of mazes, like the one shown below.

[image: blank maze]

One way to represent a maze is as an undirected graph. The vertices of such a graph are shown below, with one dimensional (vertex number) coordinates on the left version and X/Y coordinates on the right version. If there is no wall between two adjacent vertices, then the corresponding graph has an undirected edge between the vertices. For example, adj(11) would be an iterable containing the integers 12 and 16.


[image: mazeNumbering]
[image: mazeNumberingByXY]


In this lab, you’ll implement a few key graph algorithms using the provided Maze class, which has the following methods of interest:

    public int N(): Size of the maze (mazes are N x N)
    public int V(): Total number of vertices in the maze
    public Iterable<Integer> adj(int v): Returns the neighbors of v
    public int toX(int v): Returns the x coordinate of vertex v
    public int toY(int v): Returns the y coordinate of vertex v
    public int xyTo1D(int x, int y): Returns the vertex number of x, y





We’ve provided MazeDepthFirstPaths, a version of DepthFirstPaths adapted for use with mazes. For official lab credit, you’ll need to implement at least an adaptation of BreadthFirstPaths, and for those of you want a deeper understanding of graph algorithms, we’ve also provided challenges to write a cycle detection algorithm as well as to implement the A* shortest paths algorithm. Specifically, you’ll end up with:


	MazeDepthFirstPaths.java: Uses DFS to find all paths from a given source, terminating as soon as the target vertex is observed. Provided for you.

	MazeBreadthFirstPaths.java: Uses BFS to find all paths from a given source, terminating as soon as the target vertex is observed.

	MazeCycles.java: Searches for cycles in the maze. If a cycle is detected, the algorithm terminates.

	AStarPath.java: Searches for the shortest path from source to a target using A*, terminating when the target is observed.



These four maze solvers should be subclasses of the abstract MazeExplorer class, which has the following fields and methods:

    public boolean[] marked: Locations to mark in blue
    public int[] distTo: Distances to draw over the Maze
    public int[] edgeTo: Edges to draw on Maze
    public Maze maze: The maze being solved
    public void announce(): Call whenever you want the drawing updated
    public solve(): Solves the given Maze problem





The Maze class has special functionality built in so that it can see your MazeExplorer’s public variables. Specifically, whenever you call announce, it will draw the contents of your MazeExplorer’s marked, distTo, and edgeTo arrays. Make sure to call the announce method any time you want the drawing to be updated.

As an example, try compiling and running TrivialMazeExplorerDemo.java. Open up the TrivialMazeExplorer and TrivialMazeExplorerDemo files to understand what’s going on.

As a more complex example, try compiling and running DepthFirstDemo. This code was adapted from the DepthFirstPaths class [http://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html] that was discussed during lecture.

If you want to tweak the parameters of the maze, you can edit the maze.config file. There are three different types of mazes (SINGLE_GAP, POPEN_SOLVABLE, and BLANK) to choose from. A % sign at the beginning of a line in the config file comments it out.




C. MazeBreadthFirstPaths

You’ll now write a class MazeBreadthFirstPaths.java that extends MazeExplorer. You should use MazeDepthFirstPaths as inspiration. When you compile and run BreadthFirstDemo.java, you should see your algorithm crawl the graph, locating the shortest path from position (1, 1) to (N, N), stopping as soon as the (N, N) position is found.

You should use BreadthFirstPaths [http://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html] as inspiration.

I’ve put together a quick video showcasing the expected behavior of each class [http://youtu.be/nCg1qsqIVPY], though there’s a small bug in my MazeBreadthFirstPaths that I point out during the video.




D. Cycles (optional)

For this part of the lab, you’ll write a cycle detection algorithm. When you compile and run CylesDemo, you should see your algorithm crawl the graph. If it identifies any cycles, it should connected the vertices of the cycle using purple lines (by setting values in the edgeTo array and calling announce()).




E. A* (optional)

For this part of the lab, you’ll implement the A* algorithm. When you compile and run AStarDemo, you should see your algorithm crawl the graph, seeking the shortest path from (1, 1) to (N, N). Unlike BFS, the algorithm should take into account the target vertex.

For your heuristic h(v), I recommend that you use the Manhattan distance [http://en.wikipedia.org/wiki/Taxicab_geometry], which can be simply expressed as:

    Math.abs(sourceX - targetX) + Math.abs(sourceY - targetY);





Experiment with different graph types and heuristics to see how they behave.




Submission

To submit, you don’t need a zip file this time, just MazeBreadthFirstPaths.java and MagicWord11.java.





          

      

      

    

  

  
    
    
    1: MyHashMap
    
    

    
 
  
  

    
      
          
            
  ~ number: 9
~ title: Hash Maps

In this lab, you’ll create MyHashMap, an implementation of the Map61B interface, which represents a hash map. This will be very similar to Lab 8, except this time we’re building a Hash Map rather than a Tree Map.

After you’ve completed your implementation, you’ll compare the performance of your implementation to a list-based Map implementation ULLMap as well as the built-in Java HashMap class (which also uses a hash table).


1: MyHashMap

Create a class MyHashMap that implements the Map61B interface. You must do this in a file named MyHashMap.java. Your implementation is required to implement all of the methods given in Map61B except for remove. For this methods you should throw an UnsupportedOperationException. Note that you should implement keySet and iterator this time. For these methods, we recommend you simply create a HashSet instance variable that holds all your keys.

Additionally, you should implement the following constructors:

public MyHashMap();
public MyHashMap(int initialSize);
public MyHashMap(int initialSize, double loadFactor);





You should increase the size of your HashMap when the loadFactor exceeds some number of your choice, unless the HashMap was instantiated with the loadFactor parameter, in which case you should use that number. Your Hashmap should initially have a number of buckets equal to initialSize. You are not required to resize down. When resizing, make sure to multiplicatively increase the size, not additively (e.g. multiply by 2, don’t add 100 or something). Your HashMap operation should all be constant amortized time, assuming that the hashCode of any objects inserted spread things out nicely.

You should handle collisions by chaining. You may not import any libraries other than ArrayList, LinkedList, HashSet, iterator and Set.

You can test your implementation using the TestMyHashMap class in the lab9tester package.

You may find the following resources useful:


	BST code from pages 136 and 137 of Data Structures Into Java [http://www-inst.eecs.berkeley.edu/~cs61b/fa14/book2/data-structures.pdf], from our course references page.

	Chapter 3.4 of our optional Algorithms textbook.

	HashTable code code from our optional textbook [http://algs4.cs.princeton.edu/34hash/SeparateChainingHashST.java.html].

	ULLMap.java (provided), a working unordered linked list based Map61B implementation.

	Lecture 23 slides [https://docs.google.com/presentation/d/1H7253NmqEyb4rvwEQ6FQL_10tXNmAf6qBh8YTqNIvM4/pub?start=false&loop=false&delayms=3000].






2: So... How Fast Is It (Redux)?

There are two interactive speed tests provided in InsertRandomSpeedTest.java and InsertInOrderSpeedTest.java. Do not attempt to run these tests before you’ve completed MyHashMap. Once you’re ready, compile with javac oneOfTheTests.java and run with java oneOfTheTests.

The InsertRandomSpeedTest class performs tests on element-insertion speed of your MyHashMap, ULLMap (provided), and Java’s built-in HashMap. It works by asking the user for an input size N, then generates N Strings of length 10 and inserts them into the maps as <String,Integer> pairs.

Try it out and see how your data structure scales with N compared to the naive and industrial-strength implementations. Record your results in a file named speedTestResults.txt. There is no standard format required for your results, and there is no required number of data points.

Now try running InsertInOrderSpeedTest, which behaves similarly to InsertRandomSpeedTest, except this time the Strings in <String, Integer> key-value pairs are inserted in lexicographically-increasing order [http://en.wikipedia.org/wiki/Lexicographical_order]. Note that unlike lab8, your code should be in the rough ballpark of Java’s built in solution – say within a factor of 10 or so. What this tells us is that state-of-the-art HashMaps are relatively easy to implement compared to state-of-the-art TreeMaps.





          

      

      

    

  
_images/long_word_2.png
00 Editor

This is an example for word wrap. This line is getting longer and
longerandlong|





_images/vim.png
Merge branch 'master' of https://github. con/Berkeley-CS618/skeleton

# Please enter a comnit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#

# Lines starting with '#' will be ignored, and an empty message aborts

-

‘the Eommit.

rrrrrrrrrrr R






_images/8_console_movement.png
B ann - [C:\Users\tera\Documents\Academics\Berkeley\b\ann] - [ann] - ..\lab2\StrollThroughThePark java - IntelliJ IDEA 15.0.3
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

Ezann ) E1lab2 ) @ StrollThroughThePark 4t | TastrollThroughThePark ~ | D> & % 9 § @ S B Q
B Project v @ = #- 1°| @strollThroughThePark java *
L]
Ciann 7
A * Created by leo on 1/21/16.
[ .idea <y I
[ lab1
l_'|:| public class StrollThroughThePark extends Trial {
1 lab2
@ EscapeFromTheSodalabs Vs
* The intrepid adventurer Cal Ford is taking a lovely stroll through the jungle looking for treasures.
©% JourneyToAImostTheCenterOfTheEarth * Help him collect all of the treasures! You may set only one breakpoint
@ strollThroughThePark */
@ T | B public static void main(String[] args) { args: {}
raveler @ - Traveler cal = new Traveler ("Jaunty Cal", 3);
® v Trial treasureChest (cal) ;
treasureChest (cal) ;
D out treasureChest (cal) ;
] projO cal.endJourney () ;
=l .gitignore !
aann.iml )

=l my_password.txt
=l README.md

illi External Libraries

Console used to be here /\
= StrollThroughThePark / \ B L

T \ M
~+" = Variables -* [0/ Watches \ -ﬂ
©"main"@1 in group "main": RUNNI... n Y ® args = {String[0] @448} + — 2 3 M

Ll main():12, StrollThroughThePark

Debugger k= ¥ M M A

[El console

No watches

0 Loaded classes are up to date. Nothing to reload. (a minute ago)

T UTF-8¢ Git: masters @&






_images/scrollbar_middle.png





_static/file.png





_static/minus.png





_images/scrollbar.png
15 resdentn st s snomm

[tusos Govamment et cama o .
s 3 gt ow sowman comume ra s ne
o S Ty, S

et ot vt canci e gon b et

Window | oassipsm ity
height is. -5
Bt |

s asscer ot e s

1t e e o camgs vy, ainer|

Here the “thumb” is at the
This blue box shows where the text is. The text bottom. All of the text has

has a total height of 360 pixels, so the last 15 been shifted up by 15 pixels,
pixels (exactly one line) is currently off the and the top line of textis

screen hidden.





_images/runOptions.png
W AV I U VN

Browse Type Hierarchy “~H

Reformat Code 3L Recent Files 38E
Optimize Imports ~XO0

Delete... ® Navigation Bar 881
Make Module 'lab3' Drop files here from Fi

Compile 'ArithmeticTest.java’ 1+ 88F9

S Run R @ ArithmeticTest....main()

% Debug » [©] ArithmeticTest
»% Run with Coverage >





_static/up-pressed.png





_static/comment-bright.png





_images/start_menu.png
Google Chrome

®

Google Talk

Cyguines
Terminal GitBash

N7

Nz

e

e o

4

MATLAB R2014a

Edit environment variables for
your account

Environment Variables

environment variables windows 7

environment variables windows 8.1

environment variables linux

environment variables datastage

environment variables powershell

environment variables in registry

environment variables in msbuild





_images/visualizer.png
R NWHhR U DN ® LY





_images/hug_blownup_retina.png





_images/2_debug_top_right.png
a - IntelliJ IDEA 15.0.3 = X

Debug 'StrollThroughThePark' (Shift+F9)
StrollThroughThePark ~ | P> [$€% & %

ughThePark java *

’16. I

ThePark extends Trial {

iturer Cal Ford is taking a lovely stroll through the jungle looking for treasures.
211 of the treasures! You may set only one breakpoint

n(string[] args) {
7 Traveler ("Jaunty Cal", 3);

1ges
s 531ms

/a

5:14 LF* UTF-8¢ Git: master* &
4:51 PM
8 m 7z v B

1/25





_images/long_word_1.png
00 Editor

This is an example for word wrap. This line is getting longer and longerandlon  ~





_images/word_wrap_pre_wrap.png
00 Editor

This is an example for word wrap. This line is getting longer and longer, soev| ~





_images/percolation-threshold100.png
percolation
probability

o
0 0.593 1

site vacancy probability p





nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_images/env_vars.png
Coltexive\20 13in\nin32,C: Program ...
HUSERPROFILE% \AppData\LocaliTemp ¥

Vaue
CoProgram Fies (x86) Heroku

Corogram Fies\Javaljdk1.7.0_51
ot






_images/long_word_3.png
00 Editor

This is an example for word wrap. This line is getting longer and
Iolngerandlongerandlongerandlongerandlongerandlongerandlongerandlongera
n





_images/percolation-backwash.png
N/

backwash





_images/AcceleratingSawToothVisualization.png
0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Generator Output

.

- Yy

500

1,000

1,500 2,000 2,500 3,000 3,500 4,000
X






_images/8puzzle-game-tree.png
initial search node

- 13
manhattan = &
mowes-0 4 2 5

priority = 4
next search
node processed
manhattan = 3 manhattan = § .
moves=1 4 2§ moves « 1

r, currently on PQ
&
s
ar,

| 134
manhattan = 4 | | manhattan = 2 manhattan = 4
moves=2 | 4 2 5} moves = 2 moves = 2
priority =6 | i priority = 4 priority = 6
L7258
not added to PQ currently on PQ currently on PQ

(critical optimization) (will be processed next)





_images/hug_blownup.png
5 pixels 9.02 7.59 7.47 Cursoris 1
(left (rounded (rounded (rounded pixel wide,
margin) to 9) to 8) to 7) appears after

text





_images/percolation-100.png





_images/percolation-50.png





_images/6_break_first_and_last.png
B ann - [C:\Users\tera\Documents\Academics\Berkeley\b\ann] - [ann] - ..\lab2\StrollThroughThePark java - IntelliJ IDEA 15.0.3
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
Eiann ) E1lab2 ) @ StrollThroughThePark

B Project v @ = #- 1°| @strollThroughThePark java *
Ciann 7
A * Created by leo on 1/21/16.
[ .idea x
[ lab1
l_'|:| public class StrollThroughThePark extends Trial {
1 lab2
@ EscapeFromTheSodalabs Vs
* The intrepid adventurer Cal Ford is taking a lovely s
©'h JourneyToAImostTheCenterOfTheEarTh * Help him collect all of the treasures! You may set on
@ strollThroughThePark */
@ T | B public static void main(String[] args) { args: {}
raveler @ Traveler cal = new Traveler ("Jaunty Cal", 3); cal: T
@'ﬁ Trial tr ireChest (ca
treasureChest (cal) ;
D out treasureChest (cal) ;
= .gitignore () cal.endJourney () ;
aann.iml !
=l my_password.txt }
=l README.md

illi External Libraries

Debug 'r1 StrollThroughThePark
Cu Debugger|[ElConsole + = ¥ M X A fy ¥

> IS Frames +" = Variables
©"main"@1 in group "main": RUNNI... n + 3 ¥ ®args = (String[0]@448}

Ll main():13, StrollThroughThePark E cal = {Traveler@451}

@® name = "Jaunty Cal"

&
@® treasures = 0
@

@® treasuresGoal = 3

@ timeOfLastStop = 1453769752750
= @ hopsTaken = 0

% (@ hopsGoal = 2147483647

}%‘

X

?

0 Compilation completed successfully in 1s 620ms (a minute ago)






_images/node_xml.jpg
<node 1d="318886226" 1at="37.8758027" lon="-122.2604262" versio:
<tag k="name" v="Hummingbird Cafe"/>
<tag k="amenity" v="cafe"/>

treet”™ v="Euclid Avenue"/>






_images/long_word_4.png
00 Editor

This is an example for word wrap. This line is getting longer and

longerandlongerandlongerandlongerandlongerandlongerandlongerandliongera

ndlongerandlongerandlongerandlongerandlongerandlongerandiongerandlonge
randlonger]





_images/import_lib.png
Import Project

Please review libraries found. At this stage you can set library names that will be used in the project,
exclude particular libraries from the project, or move individual files between the libraries.

4 /8

Libraries Library contents

algs4-package.jar (/Users/leo/cs61b/abc/lib)
algs4.jar (/Users/leo/cs61b/abc/lib)
checkstyle-5.9-all.jar (/Users/leo/cs61b/abc/lib)
gjdb.jar (/Users/leo/cs61b/abc/lib)
hamcrest-core-1.3.jar (/Users/leo/cs61b/abc/lib)
jh61b.jar (/Users/leo/cs61b/abc/lib)
junit-4.12.jar (/Users/leo/cs61b/abc/lib)
StaffGitlet_obf.jar (/Users/leo/cs61b/abc/lib)
staffpO_obf.jar (/Users/leo/cs61b/abc/lib)
stdlib-package.jar (/Users/leo/cs61b/abc/lib)
stdlib.jar (/Users/leo/cs61b/abc/lib)
xchart-2.4.3.jar (/Users/leo/cs61b/abc/lib)

Help Cancel Previous





_images/constructor6.png
tommy —|

“Tommy”

“Poodle Golden
Retriever”

_name

_breed

_age






_images/percolates.png
lat
percols __blocked
Ste
fill
—open
empty Te
oper—

site
open site connected to top

does not percolate

S
A~

10 open site connected to top





_images/scrollbar_top.png





_images/year_args.png
o
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
Ciann ) Cllab1 ) ©@ Year

B Project N Q= B 1 @Year_java x
2 ann /** Class that determines whether or not a year is a leap year.
& id * (@author YOUR NAME HERE
.idea
1 lab1 ) Run/Debug Configurations X
@ leapYearl + — [ W ¥ ¢+ + O Name:  Year (_JShare [ Single instance only
(@ % Year = icati
& Application Configuration Code Coverage | Logs
lab2 StrollThroughThePark . ‘—‘
@ EscapeFr, JourneyToAlmostTheCente e deEs Year L= | | [copE HERE )
@ JourneyT. Year VM options: ‘ ™ ‘
@ strollThrg LeapYear Program arguments: I 2000‘ ” ™ ‘
© b Traveler % Defaults T —
®% Trial ‘ Working directory: C:\Users\tera\Documents\Academics\Berkel ‘ H ‘
Ml out Environment variables: ‘ ‘
1 projo
pro) Use classpath of module: Czann n
=l .gitignore S
aann.iml JRE: Default (1.8 - SDK of 'ann’ module) " ‘
= | ks
= my_password.t () Enable capturing form snapshots
=l README.md
il External Libraries s.");
v Before launch: Make, Activate tool window
45
4iiMake rgs[il);
Cancel Appl Hel
Run ‘| LeapYear m ‘ ‘ ‘ B ‘ ‘ 2 ‘
’, "C:\Program Files\Java\jdkl.8.0 66\bin\java" ..
hi

=2 Process finished with exit code 0

M

L2
&
=

| @

©

X

?

[ JourneyToAlmostTheCenterOfTheEarth: 0 classes reloaded; // StrollThroughThePark: 0 classes reloaded; // StrollThroughThePark: 0 classes reloaded (4 minute






_images/terminal_settings_window.png
Preferences

Q terminal Tools > Terminal & Reset
Keymap Shell path | C:\Program Files (x86)\Git\bin\sh.exe" --login -i |
Vv Editor
Inspections Tab name | Local
Live Templates ¥/ Close session when it ends
ltentions ¥/ Audible bell
Plugins = X
Vv Version Control Mousereporting
Subversion ¥/ Copy to clipboard on selection
V Build, Execution, Deployment ¥/ Paste on middle mouse button click
Debugger ¥/ Override IDE shortcuts
V Tools

? Cancel Apply OK





_images/import_sources.png
Import Project

Source files for your project have been found. Please choose directories that will
be added to the project roots. These paths correspond to default (root, unnamed, top level) packages.
Note: the program will recognize only those source files, that are located under these directories.

4 /Users/leo/cs61b/abc/hwl Java
4 /Users/leo/cs61b/abc/hw2 Java
/4 /Users/leo/cs61b/abc/hw3 Java
/4 /Users/leo/cs61b/abc/hw4 Java
/4 /Users/leo/cs61b/abc/hw5 Java
/4 /Users/leo/cs61b/abc/hwé Java
4 /Users/leo/cs61b/abc/hw7 Java
4 /Users/leo/cs61b/abc/hw8 Java
4 /Users/leo/cs61b/abc/labl Java
¥/ |Users/leo/cs61b/abc/lab12 Java
¥/ |Users/leo/cs61b/abc/lab13 Java
¥/ |Users/leo/cs61b/abc/lab2 /Arithmetic Java
4 /Users/leo/cs61b/abc/lab2 /IntList Java
4 /Users/leo/cs61b/abc/lab2 /Triangle Java
4 /Users/leo/cs61b/abc/lab3 Java
4 /Users/leo/cs61b/abc/lab6 Java
4 /Users/leo/cs61b/abc/lab8 Java
v /Users/leo/cs61b/abc/lab9/huglifeSavable Java
/4 /Users/leo/cs61b/abc/projO Java
4 /Users/leo/cs61b/abc/projl Java
v /Users/leo/cs61b/abc/projl/demos Java
4 /Users/leo/cs61b/abc/proj2 Java
¥ Iusers/lea/cs61h/ahc/nroil lava
Mark All Unmark All

Help Cancel Previous Next





_images/constructor3.png
fido —

“Fido”

“Poodle”

_name

_breed

_age






_images/7_mouse_over_step_into.png
B ann - [C:\Users\tera\Documents\Academics\Berkeley\b\ann] - [ann] - ..\lab2\JourneyToAlmostTheCenterOfTheEarth java - In
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
Eiann ) E1lab2 ) @ JourneyToAlmostTheCenterOfTheEarth

B Project v © = | #- 1= | @ strollThroughThePark java * | @ JourneyToAlmostTl
B3 ann (C:\Users\tera\Documents\Academics\Berkeley\b\ann) */
. l_'|:| public class JourneyToAlmostTheCenterOfTheEarth
[ .idea
D lab1 JE*
D| b * Cal Ford learns that there is treasure n
ab2 * Beware, though, the molten core; don't d
@ EscapeFromTheSodalabs “

public static void main(String[] arg
Traveler cal = new Traveler ("Not-quite
digForTr

@ % JourneyToAlmostTheCenterOfTheEarth
@ strollThroughThePark

digForTreasure(cal);

]
© Traveler fallToCenterOfTheEarth(cal);
@ ] TriaI digForTreasure(cal);
cal.endJourney () ;
B out ) v
1 projo
= itignore public static void digForTreasure (Traveler
-grtg double timeEnter = System.currentTimeMi
gann.iml double timeLeave = System.currentTimeMi

if (timeLeave -timeEnter > Traveler.EPS
treasureChest (t);

=l my_password.txt
=] README.md ,
illi External Libraries }

public static void fallToCenterOfTheEarth (T
double timeEnter = System.currentTimeMi
double timeLeave = System.currentTimeMi
if (timeLeave - timeEnter > Traveler.EP

t.hop();
System.out.println("You fell to a £
t.endJourney () ;

L~ Strolll Step Into (F7)¢ ‘ s (AT e[ NI EET S w JourneyToAlmostTheCenterOfTheEarth
dqugger RET T MY A g ¥

E 2 & Frames\—/ ~+" = Variables

|| ‘ ©"main"@1 in group "main": RUNNI... 1+ ¥ ¥ ®args = {String[0]@449}

Ll main():12, JourneyToAlmostTheCenterOfTheEarth E cal = {Traveler@451}

@ name = "Not-quite-lava-proof Cal"

8
@ @ treasures = 0
@ treasuresGoal = 3
() timeOfLastStop = 1453770028624
B ® hopsTaken = 0
% ® hopsGoal = 2147483647
".\
X
?

0 Step to the next line executed

1)

Y1 ann - [C:\Users\tera...






_images/sys_props.png
Compute e | arbvere (avanced }sytem Prtecton | Remote |

Youmust be ogged on s an Administrator to make most o these changss.
Pefomance.
Visual ffects. processor scheding, memory usage. and vitual memory.






_images/cs61b_lib.png
Edit System Variable

Variable pame:

Variable yalue:

o ][ e ]






_images/scrollbar_3.png





_images/BinaryTrie.png





_images/percolation-250.png





_images/intellij_preferences.png
4vVvVvVYyy

VVVVYVYVYYY

File Edit View Navigate Code Analyze

About IntelliJ IDEA -
Check for Updates...

Preferences... 38, @O = | %- 1~ @ Yearjava

i Cla:
Services > / :* @‘3_
. . */
Hide IntelliJ IDEA  8H B [ public |
Hide Others X $8H
Show All /%%
E 3
Quit IntelliJ IDEA #Q I/
@ sta
E1hw7
E1hws /%%
E 3
Ellab1 :
G B Year o
Ealab2
EJlab3
EJlab6
EJlab8
Ealab9 }
Ellab12 i
EJlab13 = e

Ealib





_images/constructor2.png
fido —

“Fido”

null

_name

_breed

_age






_images/select_terminal.png
vVVYyVYVYYVYY

>

lib
Elout
B projo
Caproj1
B proj2
B proj3
3 survey

Terminal

g Aetna:abc leo$ I

% TODO
B Messages

Event Log

m Maven Projects

9 Version Control

E- Project

% Structure
¥ Ant Build

* Favorites 9: Version Control

Q Compilation completed with 16 errors and 0 warnings in 573ms (20 minutes ago)

B 0: Messages

€ 6: TODO

if (args.lengtt

System.out.
System.out.
}
for (int i = 0;
try {
int yee
checkLe

1 _cadch (AL





_images/intellij_start_menu.png
Welcome to IntelliJ IDEA

1J

IntelliJ IDEA

¥ Create New Project
¥ Import Project
3 Open

¥ Check out from Version Control v

Configure +

Get Help ~






_images/squirrelacc.png





_images/SineWaveVisualization.png
0.8

0.6

0.4

0.2

>0

-0.2

-0.4

-0.6

-0.8

Generator Output

- Yy

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000






_images/win7_control_panel.png
CNIR » ControlPanel » -

System
Edit environment variables for your account
< EA the system environment voricbles

@ earch Windows Help and Support for "Environment”






_images/submit.png
Submit Programming Assignment

Add files via Drag & Drop or

NAME

creatures/Clorus java
creatures/Plip,java
creatures/TestClorus java

creatures/TestPlipjava

PROGRESS

x






_images/5_debugger_variables.png
= public static void main(String[] arc
. Traveler cal new Traveler ("Jat

treasureChest (cal) ;
treasureChest (cal) ;
cal.endJourney () ;

//\
k StrollThroughThePark / \

A %y M / \
/ ~+" = Variables \
in": RUNNI... n 42 /3 ¥ @ args = {String[0] @448}

v = cal = {Traveler@451}
» @ name = "Jaunty Cal"

@® treasures = 0

@ treasuresGoal = 3
() timeOfLastStop = 1453769970189
@ hopsTaken = 0

(@ hopsGoal = 2147483647






_images/add_jdk.png
Please select project SDK.
This SDK will be used by default by all project moc

" + —
Name: | 1.8
I Add New SDK

4% Intelli) Platform Plugin SDK

o ) h Sourcepath A
" Android SDK

/Library/Java/JavaVirtua
/Library/Java/JavaVirtua
/Library/Java/JavaVirtua
/Library/Java/JavaVirtua
/Library/Java/JavaVirtua
/Library/Java/JavaVirtua
Nlibrarv/lava /l1avaVirtua






_images/select_jdk.png
Select Home Directory for JDK

= R o m Hide path

[

» [Jinput Methods
» [Jinternet Plug-Ins
» [diTunes
v [lJava
» [JExtensions
v [JavavirtualMachines
v [1jdk1.8.0_60.jdk
v [JContents
v ElHome
» Obin
Bdb
Elinclude
Bljre
Ellib
» [Iman
» [IMacOs
» [JKeyboard Layouts

vVvyyvyy

? Cancel OK





_images/HJoceanSmall357x285.png





_images/terminal_test.png
¥ 2: Favorites

=

» o \WdLokCaprcari\ycaijj;
» [llab3 System.out.printf("%d is a
=10 beke |
System.out.printf("%sd is no
> [lab8 }
» [ilab9 }
> lab12
gl /%% Must be provided an integer as .
L ab13 = public static void main(String[] ar
» b if (args.length < 1) {
» [dout System.out.println("Please
» Elprojo System.out.println(“e.g. ja
N }
> Ciproji for (int i = 0; i < args.length
» Elproj2 try {
» Elproj3 int year = Integer.pars
checkLeapYear(year) ;
» [Jsurvey bk m.....f.;..:...x,uw'-mw
Terminal
- Aetna:abc leo$ echo “Hello World! I did it"
Hello World! I did it
X petna:abc leo$ I
Terminal 9 9: Version Control B 0: Messages 9 6: TODO

Compilation completed with 16 errors and 0 warnings in 573ms (22 minutes ago)





_images/selected_text.png
00 Editor

In computer science, a dynamic array, growable array, resizable array,
dynamic table, mutable array, or array list is a random access, variable-size
list data structure that allows elements to be added or removed. It is
supplied with standard libraries in many modern mainstream programming
languages.

A dynamic array is not the same thing as a dynamically allocated array,

whirh ic arn arrav whace civae ic fivard whoen Fhae arravyv ic allacratraed slbbhanakh o





_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





_static/down.png





_static/plus.png





_images/constructor1.png
fido—

null

null

_name

_breed

_age






_images/project_name.png
Import Project

Project name: | abd |

Project location:  ~/cs61b/abc

Help Cancel Previous Next





_images/percolation-150.png





_images/structure.jpg
v L3 proj3 (C:\Users\Alan\Dropbox\CS61B\p
> Dlidea
> [ example_output
» Bimg
A =E
¥ EImain
v Bljava
> EJMETA-INF
@ B Autocomplete
@ © Connection
@ © GraphDB
@ B MapDBHandler
@ B MapServer
@ v Node
@ % Point
@ u QTreeNode
@ B QuadTree
@ v TestParams
@5 Tie
@ © TrieNode
v Dlstatic
v Elresources
v Elscripts
mapjs
v Elstyles
Bimap.css
[B maphtmi
[ marker.gif
[ round_marker.gif
¥ Dltest
> Bljava
» Bltarget
B berkeley.osm
m pomxml





_static/up.png





_images/squirrelforce.png





_static/down-pressed.png





_images/newline_example.png
This is a line that ends in a newline (user pressed the enter key)
Here is a line that ends because the editor word wraps it because it s a very
long line!





_images/StrangeBitwiseVisualization.png
-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Generator Output

- Yy

500

1,000

1,500 2,000 2,500 3,000 3,500 4,000
X






_images/select_sdk.png
Import Project

Please select project SDK.
This SDK will be used by default by all project modules.

+ - Name: | 1.8
£31.8
JDK home path: brary/Java/JavaVirtualMachines/jdk1.8.0_60.jdk /Contents/Home

Classpath Sourcepath Annotations Documentation Paths

/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib /ant-javafx.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib/dt.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib /javafx-mx.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib/jconsole.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib/packager.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib/sa-jdi.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/lib/tools.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/charsets.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/deploy.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/javaws.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/jce.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/jfr.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib /jfxswt.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/jsse.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/management-agel
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/plugin.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/resources.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/rt.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/ext/cldrdata.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/ext/dnsns.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/jre/lib/ext/jaccess.jar

Help Cancel Previous Next





_images/karplus-strong.png
time t

time t+1 % 453 -2l a3 o) (=

the Karplus:Strong update

1 -.3 gy





_images/submission.png
@Upload all files for your submission
Add files via Drag & Drop or Browse Files.

NAME SIZE PROGRESS
hw2/Percolation.java 2KB
hw2/PercolationStats.java 1.3 KB

Upload Cancel





_images/word_wrap_un_wrap.png
00 Editor

This is an example for word wrap. This line is getting longer and long), so eve A





_images/1_right_click.png
B ann - [C:\Users\tera\Documents\Academics\Berkeley\b\ann] - IntelliJ IDEA 15.0.3

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
Eiann ) E1lab2 ) @ StrollThroughThePark

Project v (X 0K - 20 s

[Zann
[ .idea
[ lab1
1 lab2
@ EscapeFromTheSodalabs
@ JourneyToAlmostTheCenterOfTheEarth
@ StrollThroughThePark

© v Traveler New '

© o Trial 36 Cut Ctrl+X

£ projo 31 Copy CFrI+C
o Copy Path Ctrl+Shift+C

- .gltlg.;nore Copy as Plain Text

aanniml Copy Reference Ctrl+Alt+Shift+C
=l my_password.txt il Paste Ctrl+V
=/ README.md 2 Jump to Source F4
ili External Libraries Find Usages Alt+F7
Analyze D

Refactor D

Add to Favorites D

Browse Type Hierarchy Ctrl+H

Reformat Code Ctrl+Alt+L

Optimize Imports Ctrl+Alt+O

Delete... Delete

Make Module ‘ann’
Compile "...ThroughThePark java'  Ctrl+Shift+F9
P Run 'StrollThroughT....main()' Ctrl+Shift+F10
Debug 'StrollThroughT....main()"
¥ Run 'StrollThroughT....main()' with Coverage
1 Create 'StrollThroughT...main()"...
Local History D
Git D
@) Synchronize 'StrollThro...ePark java'

Show in Explorer

File Path Ctrl+Alt+F12
i Compare With... Ctrl+D
® Create Gist...

Y1 ann - [C\Users\tera...






_images/way_xml.jpg
B io="5149922" version="1">

<nd ref="35719150"/>

<nd "35719194"/> beginning of an
<nd "775882614"/>  element

<nd ®35719195% /3

<na ref=r775882618"/>( TS
<nd F3sraa1gen/s, Ly

<nd #35TI8187 >

<tag k="name" v="Dwight Blace"/>
<tag k="highway" v="residential"/>

</way><Z—jend of an clement

B i0-"5150501" versio:
<nd ref="34485314"/>

e

<nd 5719090"/>
<nd "2532709034"/>
<nd "2532709035"/>

<nd
<nd
<tag k=
<tag k="highway" v="residential"/>
<tag k="maxspeed" v="25 mph"/>

</way>

B 10751505027 version=riv>

35719237"/>

7608748967 />

"35719091" />
5719092"/>
name" v="Fernwald Road"/>






_images/scrollbar_5_100.png





_images/test_run.png
B.idea
EIhwl
3 hw2
E3hw3
E1hwa
Bihws
EIhwe
EIhw7
E1hws
Ellabl

4 VVVVVYVYVYYVYY

o R CEL

Ealab2
Elab3
E1lab6
E1lab8
Ealab9
Ellab12
Ellab13
E3lib
Eout
Eprojo
Caproj1
Bl proj2
Elproj3
3 survey
Eltest

VVYVYVVVYVVYVYVYVYVYVYYYVYYVYY

[? abc.iml

New

o Cut

[3 Copy
Copy Path
Copy as Plain Text
Copy Reference

[ Paste

[2 Jump to Source

Find Usages
Analyze

Refactor

Add to Favorites

Browse Type Hierarchy

Reformat Code
Optimize Imports
Delete...

Make Module "abc'

Compile 'Year.java'

O giignore ~ Run'YearmainQ' AR

# Debug 'Year.main()'

#8X
#8C
©38C

X 38C
8V
8l

XF7

“~H
&L
X0

0 38F9

~{D

» [l External Librar %% Run 'Year.main()' with Coverage

& Save 'Year.main()'

* Class
*
* @autho
*/
public cl

/¥%k
* @p:
* @r
* fa
*/
stati

/%%
*x Ca
*

* @





_images/constructor5.png
tommy —|

dog

null null
_name _breed _age
“ ” “Poodle Golden
Tom my Retriever” 1 |
_hame _breed age






_images/netforce.png





_images/word_wrap_post_wrap.png
00 Editor

This| is an example for word wrap. This line is getting longer and longer, so
eve|

A





_images/percolation-threshold20.png
percolation
probability

0 0.593 1
site vacancy probability p





_images/SawToothVisualization.png
0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Generator Output

- Yy

500

1,000

1,500 2,000 2,500 3,000 3,500 4,000
X






_images/4_breakpoint_set.png
o
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

Eiann ) E1lab2 ) @ StrollThroughThePark

5 Project v © = #- 1= @strollThroughThePark java x
Ciann 7
[ idea i/created by leo on 1/21/16.
Clab1 .
D Iab2 =] public class StrollThroughThePark extends Trial {
@ EscapeFromTheSodalabs Vasd

* The intrepid adventurer Cal Ford is taking a lovely stroll through
*

@ % JourneyToAlmostTheCenterOfTheEarth
@ strollThroughThePark
@'h Traveler @ public static void main(String[] args) {

Help him collect all of the treasures! You may set only one breakpo

Traveler cal = new Traveler ("Jaunty Cal", 3);

@ ] TriaI treasureChest (cal) ;
asyureChest(cal) ;
D GLTE treasureChest (cal) ;
D projO cal.endJourney () ;
=l .gitignore !
aann.iml )

=l my_password.txt
=l README.md

il External Libraries

Debug:| ‘7.1 StrollThroughThePark = ' StrollThroughThePark | 7. JourneyToAlmostTheCenterOfTheEarth [
@ Debugger
[ Frames ~+" = Variables

© Frame is not available

% & B

'\’x

0 Loaded classes are up to date. Nothing to reload. (moments ago)

D1 ann - [C:\Users\tera...





_images/HJoceanSmall.png





_images/percolation-204.png





_images/import_project1.png
Import Project

(e) Create project from existing sources

Import project from external model ‘

|

Help Cancel Next





_images/constructor4.png
tommy —| null null 0

_name _breed _age






_images/pairwiseforce.png
E (23710%95° 10")

(1.0°10%,20" 10%)





_images/edit_configs.png
B ann - [C:\Users\tera\Documents\Academics\Berkeley\b\ann] - [ann] - ..\lab1\Year java - Intelli) IDEA 15.0.3
File Edit View Navigate Code Analyze Refactor Build Iools VCS Window Help

Ciann ) Cllab1 ) @ Year

P Run 'LeapYear'

Project o

§ Debug 'LeapYear'

B3 ann (C:\Users\tera\Documents\Academics\Berke

[ .idea
[ lab1
@ LeapYear
(@ % Year
1 lab2
@ EscapeFromTheSodalabs

@ JourneyToAlmostTheCenterOfTheEarth

@ strollThroughThePark
© % Traveler
®© v Trial

B out

1 projo

El gitignore

[&ann.iml

EI my_password.txt

[l README.md

il External Libraries

¥ Run 'LeapYear' with Coverage
» Run...
# Debug...

Shift+F10
Shift+F9
or 1
Alt+Shift+F10
Alt+Shift+F9

Edit Configurations...

2] Import Test Results

¥ Stop...

EF show Running List
Reload Changed Classes

¥ Step Over

3 Force Step Over

N Step Into

X Force Step Into

8 Smart Step Into

& Step Out

% Run to Cursor

Y1 Force Run to Cursor

& Drop Erame

Il Pause Program

P Resume Program

B Evaluate Expression...
Quick Evaluate Expression

%= Show Execution Point
Toggle Line Breakpoint
Toggle Method Breakpoint
Toggle Temporary Line Breakpoint
Toggle Breakpoint Enabled

r
Ctrl+F2 127
ot ¢

é

year

F8 Cor1
Alt+Shift+F8 2
F7
2ar |
Alt+Shift+F